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Abstract

The purpose of this paper is to select a model for HIV that uses few parameters
while fitting the world prevalence and death data well. Here we consider a set of
models based on Erlang’s method of stages, including some with and some without
social distancing. The use of stages is supported by biological studies which suggest
that HIV passes through stages in each individual, although the exact number is
not known. This set of models can represent such stages using a successive number
of classes. To perform model selection, we compute R0 and use it to estimate
initial values of the parameters in this model. We run thousands of iterations
of a Nelder-Mead simplex search algorithm to determine the optimal values of
parameters for each model and the error associated with each model. These errors
are used to compute AICc values and then the AICc values are compared to select
the most likely model. The selected model from this experiment contains the
social distancing term as well as four infected classes/stages. We then perform
identifiability analysis and determine that the “true values” of the parameters for
this model are uniquely determinable based on the data points.

1 Introduction

Acquired Immune Deficiency Syndrome (AIDS) is a disease caused by HIV after a long
incubation period (on average 8-10 years) [18]. AIDS destroys the body’s ability to fight
other infections through the immune system. The virus has a high virulence and muta-
tion rate which make it particularly dangerous [14]. The disease not only has devastating
health effects but also economic impacts on affected individuals, families, communities,
and entire nations. Stigma causes social distancing measures between infected and un-
infected individuals to occur [10]. These include precautions such as avoiding/refusing
sexual contact with infected persons or using condoms. Data on cases is available from
the World Health Organization, including data on the worldwide prevalence of HIV and
the number of deaths each year due to AIDS.

Mathematical models are often fit to data in order to be validated. Models can
enrich our knowledge of epidemiological processes on the population scale. Some existing
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models of HIV, such as that of Bozkurt and Peker, include an HIV negative class, an
HIV positive class who know their status, and an HIV positive class who do not know
their status [2]. Low-Beer and Stoneburner created an age- and sex- structured HIV
epidemiological model [9]. Other examples of HIV models can be found in literature,
such as in the papers of Bhunu et. al. [1] and Nyabadza et. al. [15,16]. However, many
of these models use a large number of classes and parameters to model the data.

The purpose of this paper is to find a very simple model that fits the data using
few parameters. We expect that the selected model can be used as the baseline for
more complex and realistic models. Section 2 of this paper introduces the model set.
The models we are considering have an exponential social distancing term and various
numbers of stages of the infection using a technique based on Erlang’s method of stages
[7]. Each model is fitted to the data points using an optimization algorithm to determine
the parameters that minimize the error. Model selection is then performed in order to
choose the model with the highest relative likelihood out of the list of those being
tested. In Section 3, identifiability analysis is performed in order to determine if the
parameters are practically identifiable such that they can be uniquely determined based
on the data points. Section 4 contains a discussion of the findings and Section 5 contains
acknowledgments.

2 Model Selection

Figure 1: Prevalence of HIV and deaths due to AIDS worldwide using data from the
World Health Organization website [20].

The goal of this section is to select a simple model that fits the HIV prevalence data
as well as the AIDS death data (Figure 1). The following ordinary differential equation
model is widely used as a baseline model for HIV:

M1 :

{
S ′(t) = Λ− β SI

N
− µS,

I ′(t) = β SI
N
− (γ + µ)I,

(1)
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In this model, S(t) is the number of susceptible individuals at time t, I(t) is the
number of infectious individuals at time t. Susceptible individuals are recruited to the
total population at a rate Λ. Susceptible individuals become infected at a transmission
rate of β. Those infected become removed from the population at a disease-induced
death rate of γ, which in this model is the reciprocal of the average lifespan of a person
infected with HIV/AIDS. Individuals in all classes die at a natural mortality rate µ,
which varies based on the population. We will fix the value of µ in all our models at
the reciprocal of the average lifespan worldwide, 1

70
. The equation of the change in total

population size is

N ′(t) = Λ− µN − γI

In the absence of disease at equilibrium, we have

N =
Λ

µ

Hence, we can use the total population size, N, to estimate a value for Λ. The total
population size in 1990 was approximately 5.283× 109 and in 2010 was 6.857× 109 [19].
From this we generate an estimated value of 100 million individuals recruited per year
and fix Λ at this value for all our models.

The average lifespan after infection, 1
γ
, can range anywhere between 1 to 10 or more

years and has increased significantly in recent years [13]. For the parameter γ we select
a randomized initial value from the interval [ 1

10
, 1] and then update this parameter as

we fit the model.
In order to select initial values for the parameter β, we will first determine the param-

eter’s relationship with the basic reproduction number, R0. Using the next-generation
matrix approach, the linearized system for the infected compartments can be rewritten
as

x′ = (F − V )x

where
F =

(
β S
N

)
, V =

(
γ + µ

)
.

When the system is in disease-free equilibrium I = 0 and S = N , we obtain the next
generation matrix

K = FV −1 =
(

β
γ+µ

)
.

K has principal eigenvalue β
γ+µ

which is the expression forR0 for the first model. The
basic reproduction number, R0, for HIV can range from approximately 2 to 5 around
the globe [22]. We select a randomized value for R0 in the interval [2,5]. With this
value as well as the fixed value for µ and our randomized initial value for γ, we use the
formula for R0 to generate an initial value for β. We then fit model M1 to the data
using an optimization algorithm to determine the fitted values for these γ and β. The
algorithm we use is a variation of the Nelder-Mead simplex search method implemented
in Matlab. We run this algorithm for approximately 10000 iterations for each model or
until the Sum of Square Errors (SSE) value stops decreasing. We repeat these steps with
30 other sets of randomized initial values for the parameters γ and β to ensure that the
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algorithm converges to a global minimum rather than just a local minimum. We will
use these same steps for all candidate models.

Model M1 does not fit the data. This can be seen from the high SSE of 696.60 after
fitting the data to this model, as well as the poor fit on the graph in Figure 2.

Figure 2: The top row contains prevalence fittings and the bottom row contains deaths
fittings. The red dots are the data points and the blue curves are the models. In the left
column are the plots using the initial guess of parameters for model M1. In the middle
column are the solution curves using parameters after fitting. In the right column are
plots of the residuals left over from the fit. This model clearly does not fit the data.

Our goal is to find a simple model that more accurately represents the data. For
the following models, we add an exponential social distancing term, e−κ

I
N , where κ is

the rate of social distancing. A similar exponential term is seen in a paper by Williams,
where it is used to allow for heterogeneity in the risk of infection among people. The
paper asserts that high risk people are likely to be infected before low risk people so
the transmission parameter decreases as prevalence increases [21]. We introduce multiple
models with this social distancing term for HIV, and the parameters for these models are
summarized in Table 1. The interplay between human behavior and infectious disease
has been extensively studied through models in [10], showing the ability for a social
distancing effect to reduce the transmissibility of a disease.

Table 1: List of parameters in HIV models

Notation Meaning Units Value

Λ recruitment rate of susceptible individuals people
year

100 (million)

β transmission rate for HIV 1
year

as fitted

κ coefficient of social distancing unitless as fitted

µ natural mortality rate 1
year

1
70

γ disease-induced death rate 1
year

as fitted
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We now introduce Model M2, which is the same as Model M1 except with a social-
distancing term. Model M2 also has R0 = β

γ+µ

M2 :

{
S ′(t) = Λ− β SI

N
e−κ

I
N − µS,

I ′(t) = β SI
N
e−κ

I
N − (γ + µ)I,

(2)

We fit model M2 to the data and present the initial and final fit and residuals in
Figure 3.

Figure 3: The top row contains prevalence fittings and the bottom row contains deaths
fittings. The red dots are the data points and the blue curves are the models. In the left
column are the plots using the initial guess of parameters for model M2. In the middle
column are the solution curves using parameters after fitting. In the right column are
plots of the residuals left over from the fit.

The removal rate in model M2 is exponentially distributed, which may not be entirely
realistic. Each of the following gamma-models are based on Erlang’s method of stages
which allows model exit rates which are non-exponentially distributed [3]. This approach
is typically applied to stochastic HIV models; however, we use a deterministic variant
that uses a variable number of stages with the durations of stay in each stage being
independent and identically distributed exponential variables [12]. Researchers have
determined that HIV passes through various stages, the exact number of which is not
known [5]. Increasing the number of sequential infected classes in this model may help
us to understand what the optimal number of stages is. For the following models, γ is
not only the disease-induced death rate but also the rate of progression from one stage
of the disease to the next. For the next model, M3, I = I1 + I2.

M3 :


S ′(t) = Λ− β SI

N
e−κ

I
N − µS,

I ′1(t) = β SI
N
e−κ

I
N − (γ + µ)I1,

I ′2(t) = γI1 − (γ + µ)I2,

(3)

We fit model M3 to the data and present the fit and residuals in Figure 4.
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Figure 4: The top row contains prevalence fittings and the bottom row contains deaths
fittings. The red dots are the data points and the blue curves are the models. In the left
column are the plots using the initial guess of parameters for model M3. In the middle
column are the solution curves using parameters after fitting. In the right column are
plots of the residuals left over from the fit.

For the next model, I = I1 + I2 + I3.

M4 :


S ′(t) = Λ− β SI

N
e−κ

I
N − µS,

I ′1(t) = β SI
N
e−κ

I
N − (γ + µ)I1,

I ′2(t) = γI1 − (γ + µ)I2,

I ′3(t) = γI2 − (γ + µ)I3,

(4)

We fit model M4 to the data and present the fit and residuals in Figure 5.

Figure 5: The top row contains prevalence fittings and the bottom row contains deaths
fittings. The red dots are the data points and the blue curves are the models. In the left
column are the plots using the initial guess of parameters for model M4. In the middle
column are the solution curves using parameters after fitting. In the right column are
plots of the residuals left over from the fit.
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For the next model, I = I1 + I2 + I3 + I4.

M5 :



S ′(t) = Λ− β SI
N
e−κ

I
N − µS,

I ′1(t) = β SI
N
e−κ

I
N − (γ + µ)I1,

I ′2(t) = γI1 − (γ + µ)I2,

I ′3(t) = γI2 − (γ + µ)I3,

I ′4(t) = γI3 − (γ + µ)I4,

(5)

We fit model M5 to the data and present the fit and residuals in Figure 6.

Figure 6: The top row contains prevalence fittings and the bottom row contains deaths
fittings. The red dots are the data points and the blue curves are the models. In the left
column are the plots using the initial guess of parameters for model M5. In the middle
column are the solution curves using parameters after fitting. In the right column are
plots of the residuals left over from the fit.

For the next model, I = I1 + I2 + I3 + I4 + I5.

M6 :



S ′(t) = Λ− β SI
N
e−κ

I
N − µS,

I ′1(t) = β SI
N
e−κ

I
N − (γ + µ)I1,

I ′2(t) = γI1 − (γ + µ)I2,

I ′3(t) = γI2 − (γ + µ)I3,

I ′4(t) = γI3 − (γ + µ)I4,

I ′5(t) = γI4 − (γ + µ)I5,

(6)

We fit model M6 to the data and present the fit and the residuals in Figure 7. Since
the SSE has increased from that of Model M5, we will stop the process of adding more
stages at this point.
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Figure 7: The top row contains prevalence fittings and the bottom row contains deaths
fittings. The red dots are the data points and the blue curves are the models. In the left
column are the plots using the initial guess of parameters for model M6. In the middle
column are the solution curves using parameters after fitting. In the right column are
plots of the residuals left over from the fit.

In the previous models, the prevalence data is fitted very well; however, the death
data does not fit quite as well. Thus, for the next model, we will modify Model M5

such that there is a separate parameter for deaths, changing the final γ to γ2, in order
to determine if this will improve the fitting of the death data. As in Model M5, I =
I1 + I2 + I3 + I4.

M7 :



S ′(t) = Λ− β SI
N
e−κ

I
N − µS,

I ′1(t) = β SI
N
e−κ

I
N − (γ + µ)I1,

I ′2(t) = γI1 − (γ + µ)I2,

I ′3(t) = γI2 − (γ + µ)I3,

I ′4(t) = γI3 − (γ2 + µ)I4,

(7)

We fit model M7 to the data and present the fit and the residuals in Figure 9.
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Figure 8: The top row contains prevalence fittings and the bottom row contains deaths
fittings. The red dots are the data points and the blue curves are the models. In the left
column are the plots using the initial guess of parameters for model M7. In the middle
column are the solution curves using parameters after fitting. In the right column are
plots of the residuals left over from the fit.

We will also repeat this with a separate parameter for each of the transitions between
classes in Model M8. Again, I = I1 + I2 + I3 + I4.

M8 :



S ′(t) = Λ− β SI
N
e−κ

I
N − µS,

I ′1(t) = β SI
N
e−κ

I
N − (γ + µ)I1,

I ′2(t) = γI1 − (γ2 + µ)I2,

I ′3(t) = γ2I2 − (γ3 + µ)I3,

I ′4(t) = γ3I3 − (γ4 + µ)I4,

(8)

We fit model M8 to the data and present the fit and the residuals in Figure 10.

Figure 9: The top row contains prevalence fittings and the bottom row contains deaths
fittings. The red dots are the data points and the blue curves are the models. In the left
column are the plots using the initial guess of parameters for model M8. In the middle
column are the solution curves using parameters after fitting. In the right column are
plots of the residuals left over from the fit.
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Lastly, we include Model M9 which has 4 infected stages like Model M5, but without
the exponential social distancing term. Again, I = I1 + I2 + I3 + I4.

M9 :



S ′(t) = Λ− β SI
N
− µS,

I ′1(t) = β SI
N
− (γ + µ)I1,

I ′2(t) = γI1 − (γ + µ)I2,

I ′3(t) = γI2 − (γ + µ)I3,

I ′4(t) = γI3 − (γ + µ)I4,

(9)

This model does not fit the prevalence or death data, which can be seen through
it’s extremely high SSE of 618.80 (See Table 3). We conclude that the presence of an
exponential social distancing term is essential for HIV models to fit the data.

Table 2 gives the fitted values of the parameters for each of the models M1 through
M9.

Model κ β γ γ2 γ3 γ4

1 - 0.1741 0.0633 - - -
2 362.40 0.5051 0.0593 - - -
3 319.15 0.4197 0.1483 - - -
4 287.74 0.3635 0.2362 - - -
5 274.39 0.3421 0.3247 - - -
6 264.48 0.3280 0.4141 - - -
7 256.15 0.3176 0.5049 0.4873 - -
8 211.40 0.4349 0.4325 0.5456 0.5122 0.5993
9 - 0.2086 0.5461 - - -

Table 2: Fitted values of the parameters for each model.

We compare the accuracy of the models using the Sum of Square Errors (SSE) and
the Akaike Information Criterion (AIC). The SSE is calculated as

SSE =
∑

(yi − ŷi)2

where yi is the value the model predicts and ŷi is the value from the data set. The AIC
allows us to decide which model fits best based on having both the lowest error and the
least number of parameters. It is calculated as

AIC = 2k + n

(
ln

(
SSE

n

))
With too many parameters, the models can become overly complex. This can lead to

overfitting in which case the models describe the random noise in addition to the actual
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relationship, reducing the effectiveness of the model. Because of the small number of
data points proportional to the number of parameters fitted, we use the AICc, which is
corrected for finite sample sizes. The formula for AICc is as follows,

AICc = AIC +
2k(k + 1)

n− k − 1

where k is the number of parameters fitted and n is sample size [4].
The AICc and SSE for all models are listed in Table 3 below.

Model SSE Param fitted AICc ∆j W
(1) 696.60 2 73.184 ∆1 = 119.324 5.258 ×10−27

(2) 5.888 3 -14.659 ∆2 = 31.481 6.247 ×10−8

(3) 2.206 3 -33.312 ∆3 = 12.828 7.016 ×10−4

(4) 1.607 3 -39.331 ∆4 = 6.809 0.0142
(5) 1.123 3 -46.140 ∆5 = 0 0.428
(6) 1.180 3 -45.200 ∆6 = 0.941 0.2676
(7) 0.986 4 -45.355 ∆7 = 0.785 0.2892
(8) 0.944 6 -38.039 ∆8 = 8.101 0.0074
(9) 618.80 2 70.909 ∆8 = 117.042 1.627 ×10−26

Table 3: List of SSE, AICc, and Relative Likelihood for Various Models

The column ∆j is calculated as

∆j = AICj −min(AIC)

The final column lists the relative likelihood of each model, given by

e−∆j/2∑
e−∆j/2

Looking at the table, we can see that Model M5 fits the data the best; however,
Models M6 and M7 also have some support in the data.
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Figure 10: This figure contains the models fitted to the prevalence data. The data points
are in red and the solutions to the models are in blue.

Figure 11: This figure contains the models fitted to the death data. The data points are
in red and the solutions to the models are in blue.

3 Identifiability Analysis

The results of this study depend greatly on being able to estimate the parameters using
the HIV prevalence and deaths data. We must determine if the parameters in the models
we are using are identifiable to ensure that we are able to properly estimate the “true
values” of the parameters. If multiple sets of parameters lead to the same outputs, the
model is considered non-identifiable and we are unable to estimate these “true values”.
For Model M1, we use a differential algebra approach in order to test its identifiability.
This can be calculated by hand using a method from [11]. In this model we have observed
I(t), the total prevalence of the disease in year t, as well as γI(t), the number of deaths
in year t. Thus γ is identifiable. In order to determine if β is identifiable we will obtain
an input-output function. We eliminate the unobserved state, S, from the system and
obtain an equation in I and its derivatives. We do so by solving for S in the first equation
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and then differentiating this with respect to t to obtain S ′. We then replace S and S ′ in
the first equation with these expressions. We obtain the following input-output function:

Λ− (I ′ + (γ + µ)I)− µ I ′I + (γ + µ)I2

βI − I ′ − (γ + µ)I
= S ′

where

S ′ =
[βI − I ′ − (γ + µ)I][(I ′)2 + II ′′ + 2II ′(γ + µ)]− [I ′I + (γ + µ)I2][βI ′ − I ′′ − (γ + µ)I ′]

[βI − I ′ − (γ + µ)I]2
.

In this approach, the ODE model is structurally identifiable if there is an injective
map from the parameter space to the coefficients of the input-output equations. Since
λ and µ are fixed in this model and we have determined that γ is identifiable, β is also
identifiable. From this we conclude that all the parameters in Model M1 are structurally
identifiable as long as Λ and µ are held constant.

Structural identifiability analysis of Models M2 through M8 is not possible by means
of the differential algebra approach because the social distancing term is exponential and
this approach only works with rational functions [17]. Thus we will use Monte Carlo
simulations in order to study the practical identifiability of the parameters in Model M5.
This is done as follows:

1. Estimate the parameters using the least squares method. These estimated values,
which can be found in Table 2, are considered to be the true parameters p0.

2. Solve the epidemiological model numerically with the true parameter set p0 and
obtain the output vector of prevalence and death values predicted by the model
at the discrete data time points.

3. Using these predicted values and the actual values from the data at these time
points, calculate the normalized residuals.

4. Generate M = 1000 residual vectors chosen from a normal distribution in which
the mean is the residuals generated in the previous step and the standard deviation
is the measurement error, σ0, which we first set to 0.

5. Add these residual values to the actual data points to generate M = 1000 sets of
simulated data.

6. Fit the model M5 to the simulated data sets using the Nelder-Mead algorithm in
MATLAB to estimate the parameter sets for the simulated data.

7. Calculate the average relative estimation error for each parameter by

ARE(p(k)) = 100%
1

M

M∑
j=1

|p(k)
0 − p

(k)
j |

p
(k)
0

where p(k) is the kth parameter in the set.
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8. Finally, repeat all the steps with increased levels of noise, setting σ0 to 5% and
30%.

We report the computed ARE values of each parameter in Table 4.

Parameter ARE 0% ARE 5% ARE 30%
β 3.669 ×10−5% 6.154 ×10−2% 5.915×10−1%
k 9.535 ×10−4% 1.067 ×10−1% 1.168 %
γ 7.152 ×10−5% 7.280×10−2% 7.096×10−1%

Table 4: Average Relative Estimation (ARE)errors from the Monte Carlo Simulations

We add noise to the model at the actual data points by drawing residuals from a
normal distribution and adding them to the model output. If the model were structurally
identifiable, then when there is no noise in the data, the AREs should be very close to
0 if not 0 [6]. As a strict measure, when σ0 = 5%, all AREs below 5% are considered
identifiable. Table 4 shows that the ARE values for all the variables are relatively low,
even when noise is added, so we claim that these parameters are practically identifiable.

4 Discussion

In this paper, we wish to select a simple epidemiological model of human immunodefi-
ciency virus that fits both the prevalence data and the AIDS death data. We define a
set of models with or without an exponential social distancing term and stages based on
an Erlang’s distribution.

The inclusion of an exponential decay term representing social distancing greatly
improves the fit of the model to the data. Increasing the number of sequential infected
classes improves the fit until the model reaches four infected classes in Model M5. After
this point, we see the error begins to increase. According to research studies, HIV
passes through many stages within each host; however, it is not known exactly how
many steps and transitions occur [3]. These classes in the model may help to represent
this phenomenon. The selection of M5 as the best fitted model suggests that on average
HIV goes through 4 stages lasting approximately 3 years each. This roughly agrees with
the findings of [8].

The figures with the final fits and residuals show that all of the models with the
social distancing term appear to fit the prevalence data well with randomly distributed
residuals. From the plots of the AIDS death models and residuals, it can be seen that the
models overestimate the number of deaths in later years. This may be due to improved
medications in later years that cause the death rate to be time-dependent. In Model M7

we attempt to improve the fit of the AIDS death data by replacing the final γ which
corresponds to the rate at which infected individuals are removed from the population
with a separate parameter, γ2. This does lower the error of the fit, although it does not
lower it enough to justify an extra parameter being fit according to the AICc. In Model
M8 we attempt to use a separate parameter for each transition rate between stages
which lowers the error but greatly increases the AICc due to the increased number of
parameters.
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We make another attempt to improve the fit of the model to the death data by using
the selected model, M5, but with weighted least squares for the fitting of parameters.
Because the average values for the number of deaths are approximately one tenth the
magnitude of the average values for prevalence, we multiply the error from deaths by ten
to bring it near the order of the error for the prevalence data. This also does not appear
to improve the fit to the death data. This model clearly fits the prevalence data and
fits the AIDS death data except in the last three years of data points, suggesting that a
time-dependent death rate may create a better fitting and more complex model. In the
future, it would be interesting to investigate a model similar to the selected model in
this paper except with the disease-induced death rate, γ, being a function of time such
as a step-function rather than a parameter.

Finally, we conduct practical identifiability analysis on the selected model using a
Monte Carlo method and determine that all of its parameters are practically identifiable.

Overall, we were able to find a simple model that fits the prevalence data well and
fits the death data well except for in the most recent years. We also discovered that
this model is practically identifiable and identified the constants which could be useful
in future work.
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