Skip to main content
Log in

Application of Nanotechnologies in Studying Yeast Structure in Candida

  • REVIEWS
  • Published:
Nanobiotechnology Reports Aims and scope Submit manuscript

Abstract

This review considers the methods of probe, electron, and confocal microscopy for studying the structure of the yeast Candida. The latest advances in the study of antimicrobial effects by high-resolution microscopy are presented. The advantages and disadvantages of each method are presented, as well as the limits of their application. Processes such as cell wall lysis and destruction of the cytoplasmic membrane caused by antifungal drugs are described, as well as their effect on the nanostructural or mechanical properties of Candida. Particular attention is paid to sample preparation of Candida and scanning protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.
Fig. 21.
Fig. 22.

Similar content being viewed by others

REFERENCES

  1. M. A. Pfaller and D. J. Diekema, Clin. Microbiol. Rev. 20, 133 (2007). https://doi.org/10.1128/CMR.00029-06

    Article  CAS  Google Scholar 

  2. G. Janbon, J. Quintin, F. Lanternier, et al., Genes Immun. 20, 403 (2019). https://doi.org/10.1038/s41435-019-0071-2

    Article  Google Scholar 

  3. S. Wu, Y. Wang, N. Liu, et al., J. Med. Chem. 60, 2193 (2017). https://doi.org/10.1021/acs.jmedchem.6b01203

    Article  CAS  Google Scholar 

  4. D. W. Denning and W. W. Hope, Trends Microbiol. 18, 195 (2010). https://doi.org/10.1016/j.tim.2010.02.004

    Article  CAS  Google Scholar 

  5. S. El-Kirat-Chatel, A. Beaussart, D. Alsteens, et al., Nanoscale 5, 1105 (2013). https://doi.org/10.1039/c2nr33215a

    Article  CAS  Google Scholar 

  6. M. B. Kurtz and C. M. Douglas, Med. Mycol. 35 (2), 79 (1997). https://doi.org/10.1080/02681219780000961

    Article  CAS  Google Scholar 

  7. P. G. Pappas, C. A. Kauffman, D. Andes, et al., Clin. Infect. Dis. 48, 503 (2009). https://doi.org/10.1086/596757

    Article  CAS  Google Scholar 

  8. F. C. Odds, A. J. P. Brown, and N. A. R. Gow, Trends Microbiol. 11, 272 (2003). https://doi.org/10.1016/s0966-842x(03)00117-3

    Article  CAS  Google Scholar 

  9. A. Vermes, J. Antimicrob. Chemother. 46, 171 (2000). https://doi.org/10.1093/jac/46.2.171

    Article  CAS  Google Scholar 

  10. Y. F. Dufr?fene, T. Ando, R. Garcia, et al., Nat. Nanotechnol. 12, 295 (2017). https://doi.org/10.1038/nnano.2017.45

  11. D. Alsteens, A. Beaussart, S. El-Kirat-Chatel, et al., PLoS Pathog. 9 (9), 1 (2013). https://doi.org/10.1371/journal.ppat.1003516

    Article  CAS  Google Scholar 

  12. D. G. Deryabin, A. S. Vasilchenko, E. S. Aleshina, et al., Nanotechnol. Russ. 5, 857 (2010). https://doi.org/10.1134/s1995078010110169

    Article  Google Scholar 

  13. T. Vila, B. B. Fonseca, M. M. L. da Cunha, et al., J. Microsc. 267, 409 (2017). https://doi.org/10.1111/jmi.12580

    Article  CAS  Google Scholar 

  14. J. Guo, G. Wang, W. Tang, et al., J. Struct. Biol. 212, 107600 (2020). https://doi.org/10.1016/j.jsb.2020.107600

    Article  CAS  Google Scholar 

  15. G. Bhakta, K. H. Lee, R. Magalhães, et al., Biomaterials 30, 336 (2009). https://doi.org/10.1016/j.biomaterials.2008.09.030

    Article  CAS  Google Scholar 

  16. A. Bertin, M. A. McMurray, J. Pierson, et al., Mol. Biol. Cell. 23, 423 (2012). https://doi.org/10.1091/mbc.e11-10-0850

    Article  CAS  Google Scholar 

  17. T. H. Giddings, E. T. O’Toole, M. Morphew, et al., Methods Cell Biol. 67, 27 (2001). https://doi.org/10.1016/s0091-679x(01)67003-1

    Article  CAS  Google Scholar 

  18. D. J. Müller and Y. F. Dufrêne, Trends Cell Biol. 21, 461 (2011). https://doi.org/10.1016/j.tcb.2011.04.008

    Article  CAS  Google Scholar 

  19. S. G. W. Kaminskyj and T. E. S. Dahms, Micron 39, 349 (2008). https://doi.org/10.1016/j.micron.2007.10.023

    Article  CAS  Google Scholar 

  20. S. Liu and Y. Wang, Scanning 32 (2), 61 (2010). https://doi.org/10.1002/sca.20173

    Article  CAS  Google Scholar 

  21. E. M. Puchner and H. E. Gaub, Curr. Opin. Struct. Biol. 19, 605 (2009). https://doi.org/10.1016/j.sbi.2009.09.005

    Article  CAS  Google Scholar 

  22. Y. F. Dufr?fene, E. Evans, A. Engel, et al., Nat. Methods 8, 123 (2011). https://doi.org/10.1038/nmeth0211-123

  23. K. C. Neuman and A. Nagy, Nat. Methods 5, 491 (2008). https://doi.org/10.1038/nmeth.1218

    Article  CAS  Google Scholar 

  24. C. Formosa, M. Grare, R. E. Duval, et al., Nanomed. Nanotechnol. Biol. Med. 8, 12 (2012). https://doi.org/10.1016/j.nano.2011.09.009

    Article  CAS  Google Scholar 

  25. C. Formosa, M. Grare, E. Jauvert, et al., Sci. Rep. 2, 1 (2012). https://doi.org/10.1038/srep00575

    Article  CAS  Google Scholar 

  26. J. Tian, X. Ban, H. Zeng, et al., Food Control. 22, 1992 (2011). https://doi.org/10.1016/j.foodcont.2011.05.018

    Article  CAS  Google Scholar 

  27. J. Chra, L. Long, N. Isham, et al., Antimicrob. Agents Chemother. 62 (8) (2018). https://doi.org/10.1128/aac.00722-18

  28. B. H. Sen, B. Piskin, and T. Demirci, Dent. Traumatol. 11, 6 (1995). https://doi.org/10.1111/j.1600-9657.1995.tb00671.x

    Article  CAS  Google Scholar 

  29. P. de Boer, J. P. Hoogenboom, and B. N. G. Giepmans, Nat. Methods 12, 503 (2015). https://doi.org/10.1038/nmeth.3400

    Article  CAS  Google Scholar 

  30. G. Binnig, C. F. Quate, and C. Gerber, Phys. Rev. Lett. 56, 930 (1986). https://doi.org/10.1103/physrevlett.56.930

    Article  CAS  Google Scholar 

  31. R. Louise Meyer, X. Zhou, L. Tang, et al., Ultramicroscopy 110, 1349 (2010). https://doi.org/10.1016/j.ultramic.2010.06.010

    Article  CAS  Google Scholar 

  32. Y. F. Dufrêne, Analyst 133, 297 (2008). https://doi.org/10.1039/b716646j

    Article  CAS  Google Scholar 

  33. Q. Zhong, D. Inniss, K. Kjoller, et al., Surf. Sci. 290, L688 (1993). https://doi.org/10.1016/0167-2584(93)90906-y

    Article  CAS  Google Scholar 

  34. Y. Martin, C. C. Williams, and H. K. Wickramasinghe, J. Appl. Phys. 61, 4723 (1987). https://doi.org/10.1063/1.338807

    Article  CAS  Google Scholar 

  35. M. Janeczko, K. Kubiński, A. Martyna, et al., J. Med. Microbiol. 67, 598 (2018). https://doi.org/10.1099/jmm.0.000700

    Article  CAS  Google Scholar 

  36. Y. Kumagai, Y. Shinkai, T. Miura, et al., Ann. Rev. Pharmacol. Toxicol. 52, 221 (2012). https://doi.org/10.1146/annurev-pharmtox-010611-134517

    Article  CAS  Google Scholar 

  37. C. Ibis, A. F. Tuyun, H. Bahar, et al., Med. Chem. Res. 23, 2140 (2014). https://doi.org/10.1007/s00044-013-0806-y

    Article  CAS  Google Scholar 

  38. W. Nittayananta, K. Pangsomboon, P. Panichayupakaranant, et al., J. Oral Pathol. Med. 42, 698 (2013). https://doi.org/10.1111/jop.12060

    Article  CAS  Google Scholar 

  39. M. Motallebnejad, S. Akram, A. Moghadamnia, et al., J. Contemp. Dent. Pract. 9 (3), 1 (2008). https://doi.org/10.5005/jcdp-9-3-40

    Article  Google Scholar 

  40. N. S. Al-Waili, K. Salom, G. Butler, et al., J. Med. Food. 14, 1079 (2011). https://doi.org/10.1089/jmf.2010.0161

    Article  CAS  Google Scholar 

  41. R. A. Cooper, E. Lindsay, and P. C. Molan, J. ApiProduct ApiMedical Sci. 3 (3), 117 (2011). https://doi.org/10.3896/IBRA.4.03.3.02

    Article  Google Scholar 

  42. S. E. Maddocks, M. S. Lopez, R. S. Rowlands, et al., Microbiology 158, 781 (2012). https://doi.org/10.1099/mic.0.053959-0

    Article  CAS  Google Scholar 

  43. T. Alejani, J. Marsan, W. Ferris, et al., Otolaryngol. Head Neck Surg. 141, 114 (2009). https://doi.org/10.1016/j.otohns.2009.01.005

    Article  Google Scholar 

  44. M. J. Ansari, A. Al-Ghamdi, S. Usmani, et al., Arch. Med. Res. 44, 352 (2013). https://doi.org/10.1016/j.arcmed.2013.06.003

    Article  Google Scholar 

  45. P. Lal, D. Sharma, P. Pruthi, et al., J. Appl. Microbiol. 109, 128 (2010). https://doi.org/10.1111/j.1365-2672.2009.04634.x

    Article  CAS  Google Scholar 

  46. G. E. D. A. Helal, M. M. Sarhan, A. N. K. Abu Shahla, et al., J. Basic Microbiol. 47 (1), 5 (2007). https://doi.org/10.1002/jobm.200610137

    Article  CAS  Google Scholar 

  47. A. K. Tyagi and A. Malik, Micron 41, 797 (2010). https://doi.org/10.1016/j.micron.2010.05.007

    Article  CAS  Google Scholar 

  48. O. Horf, U. Schnabel, A. Bösel, et al., Microb. Biotechnol. 12, 1034 (2019). https://doi.org/10.1111/1751-7915.13459

    Article  CAS  Google Scholar 

  49. H. Martin-Yken, T. Bedekovic, A. C. Brand, et al., Cell Surf. 4, 10 (2018). https://doi.org/10.1016/j.tcsw.2018.10.002

    Article  CAS  Google Scholar 

  50. S. Aguayo, H. Marshall, J. Pratten, et al., J. Dent. Res. 96, 917 (2017). https://doi.org/10.1177/0022034517706354

    Article  CAS  Google Scholar 

  51. E. Uzunoglu, A. Z. Y. Bicer, I. Dolapci, et al., J. Adv. Prosthodont. 6, 30 (2014). https://doi.org/10.4047/jap.2014.6.1.30

    Article  Google Scholar 

  52. D. Alsteens, M. C. Garcia, P. N. Lipke, et al., Proc. Natl. Acad. Sci. U. S. A. 107, 20744 (2010). https://doi.org/10.1073/pnas.1013893107

    Article  Google Scholar 

  53. A. Ebner, L. Wildling, A. S. M. Kamruzzahan, et al., Bioconjug. Chem. 18, 1176 (2007). https://doi.org/10.1021/bc070030s

    Article  CAS  Google Scholar 

  54. C. Formosa, M. Schiavone, H. Martin-Yken, et al., Antimicrob. Agents Chemother. 57, 3498 (2013). https://doi.org/10.1128/aac.00105-13

    Article  CAS  Google Scholar 

  55. F. Quilès, I. Accoceberry, C. Couzigou, et al., Nanoscale 9, 13731 (2017). https://doi.org/10.1039/c7nr02170d

    Article  CAS  Google Scholar 

  56. A. S. Smith, K. Sengupta, S. Goennenwein, et al., Proc. Natl. Acad. Sci. U. S. A. 105, 6906 (2008). https://doi.org/10.1073/pnas.0801706105

    Article  Google Scholar 

  57. A. Bershadsky, M. Kozlov, and B. Geiger, Curr. Opin. Cell Biol. 18, 472 (2006). https://doi.org/10.1016/j.ceb.2006.08.012

    Article  CAS  Google Scholar 

  58. A. T. Frank, C. B. Ramsook, H. N. Otoo, et al., Eukaryot. Cell. 9, 405 (2010). https://doi.org/10.1128/ec.00235-09

    Article  CAS  Google Scholar 

  59. S. Kasas and A. Ikai, Biophys. J. 68, 1678 (1995). https://doi.org/10.1016/s0006-3495(95)80344-9

    Article  CAS  Google Scholar 

  60. S. Hasim and D. P. Allison, Infect. Immun. 85 (1) (2017). https://doi.org/10.1128/iai.00601-16

  61. E. Dague, R. Bitar, H. Ranchon, et al., Yeast 27, 673 (2010). https://doi.org/10.1002/yea.1801

    Article  CAS  Google Scholar 

  62. D. S. Perlin, Clin. Infect. Dis. 61, S612 (2015). https://doi.org/10.1093/cid/civ791

    Article  CAS  Google Scholar 

  63. L. A. Walker, C. A. Munro, I. de Bruijn, et al., PLoS Pathog. 4 (4), e1000040 (2008). https://doi.org/10.1371/journal.ppat.1000040

    Article  CAS  Google Scholar 

  64. A. Page, D. Perry, and P. R. Unwin, Proc. R. Soc. A 473, 20160889 (2017). https://doi.org/10.1098/rspa.2016.0889

    Article  Google Scholar 

  65. Y. E. Krochev, C. L. Bashford, M. Milovanovic, et al., Biophys. J. 73, 653 (1997). https://doi.org/10.1016/s0006-3495(97)78100-1

    Article  Google Scholar 

  66. O. Kappeli, M. Muller, and A. Fiechter, J. Bacteriol. 133, 952 (1978). .https://doi.org/10.1128/JB.133.2.952-958.1978

    Article  CAS  Google Scholar 

  67. P. Walther, M. Müller, and M. E. Schweingruber, Arch. Microbiol. 137, 128 (1984). https://doi.org/10.1007/bf00414453

    Article  CAS  Google Scholar 

  68. O. Käppeli, P. Walther, M. Mueller, et al., Arch. Microbiol. 138, 279 (1984). https://doi.org/10.1007/bf00410890

    Article  Google Scholar 

  69. M. Mueller, N. Meister, and H. Moor, Mikroskopie 36, 129 (1980).

    Google Scholar 

  70. O. Kappeli and A. Fiechter, J. Bacteriol. 131, 917 (1977). https://doi.org/10.1128/JB.131.3.917-921.1977

    Article  CAS  Google Scholar 

  71. Y. Iimura, S. Hara, and K. I. Otsuka, Agric. Biol. Chem. 45, 1113 (1981). https://doi.org/10.1080/00021369.1981.10864679

    Article  CAS  Google Scholar 

  72. J. V. Desai, A. P. Mitchell, and D. R. Andes, Cold Spring Harb. Perspect. Med. 4, a019729 (2014). https://doi.org/10.1101/cshperspect.a019729

    Article  Google Scholar 

  73. S. C. Deorukhkar and S. Saini, Interdiscip. Perspect. Infect. Dis. 2016, 1 (2016). https://doi.org/10.1155/2016/1854673

    Article  Google Scholar 

  74. P. Madhavan, F. Jamal, C. P. Pei, et al., Mycopathologia 183, 499 (2018). https://doi.org/10.1007/s11046-018-0243-z

    Article  CAS  Google Scholar 

  75. H. H. Lara, L. Ixtepan-Turrent, J. M. Yacaman, et al., ACS Appl. Mater. Interfaces 12, 21183 (2020). https://doi.org/10.1021/acsami.9b20708

    Article  CAS  Google Scholar 

  76. K. Satoh, K. Makimura, Y. Hasumi, et al., Microbiol. Immunol. 53, 41 (2009). https://doi.org/10.1111/j.1348-0421.2008.00083.x

    Article  CAS  Google Scholar 

  77. S. Sarma and S. Upadhyay, Infect. Drug Resist. 10, 155 (2017). https://doi.org/10.2147/idr.s116229

    Article  CAS  Google Scholar 

  78. B. Short, J. Brown, C. Delaney, et al., J. Hosp. Infect. 103, 92 (2019). https://doi.org/10.1016/j.jhin.2019.06.006

    Article  CAS  Google Scholar 

  79. V. A. Nadtochenko, M. A. Radtsig, and I. A. Khmel, Nanotechnol. Russ. 5, 277 (2010). https://doi.org/10.1134/s1995078010050010

    Article  Google Scholar 

  80. A. Jan, C. Liu, H. Deng, et al., Photodiagn. Photodyn. Ther. 27, 419 (2019). https://doi.org/10.1016/j.pdpdt.2019.07.014

    Article  CAS  Google Scholar 

  81. M. Bohnke and B. R. Masters, Ophthalmology 104, 1887 (1997). https://doi.org/10.1016/s0161-6420(97)30011-6

    Article  CAS  Google Scholar 

  82. B. R. Masters, in CIS Selected Papers: Coherence-Domain Methods in Biomedical Optics, Proc. SPIE 2732, 155 (1996). https://doi.org/10.1117/12.231674

    Article  Google Scholar 

  83. R. H. Webb, G. W. Hughes, and O. Pomerantzeff, Appl. Opt. 19, 2991 (1980). https://doi.org/10.1364/ao.19.002991

    Article  CAS  Google Scholar 

  84. P. Sudbery, N. Gow, and J. Berman, Trends Microbiol. 12, 317 (2004). https://doi.org/10.1016/j.tim.2004.05.008

    Article  CAS  Google Scholar 

  85. A. Beaussart, D. Alsteens, S. El-Kirat-Chatel, et al., ACS Nano 6, 10950 (2012). https://doi.org/10.1021/nn304505s

    Article  CAS  Google Scholar 

  86. B. W. Hazen and K. C. Hazen, Infect. Immun. 56, 2521 (1988). .https://doi.org/10.1128/IAI.56.9.2521-2525.1988

    Article  CAS  Google Scholar 

  87. A. Lyden, L. Lombardi, W. Sire, et al., Nanoscale 9, 15911 (2017). https://doi.org/10.1039/c7nr04724j

    Article  CAS  Google Scholar 

  88. X. Zhao, S. H. Oh, G. Cheng, et al., Microbiology 150, 2415 (2004). https://doi.org/10.1099/mic.0.26943-0

    Article  CAS  Google Scholar 

  89. G. Hwang, Y. Liu, D. Kim, et al., PLoS Pathog. 13 (6), e1006407 (2017). https://doi.org/10.1371/journal.ppat.1006407

    Article  CAS  Google Scholar 

  90. M. I. Klein, J. Xiao, A. Heydorn, et al., J. Vis. Exp., No. 47, 2512 (2010). https://doi.org/10.3791/2512

  91. P. V. Sanitá, A. C. Pavarina, L. N. Dovigo, et al., Lasers Med. Sci. 33, 709 (2018). https://doi.org/10.1007/s10103-017-2382-8

    Article  Google Scholar 

  92. A. P. D. Ribeiro, A. C. Pavarina, L. N. Dovigo, et al., Lasers Med. Sci. 28, 391 (2013). https://doi.org/10.1007/s10103-012-1064-9

    Article  Google Scholar 

  93. C. C. C. Quishida, E. G. de Oliveira Mima, J. H. Jorge, et al., Lasers Med. Sci. 31, 997 (2016). https://doi.org/10.1007/s10103-016-1942-7

    Article  Google Scholar 

  94. M. Vicinanza, V. I. Korolchuk, A. Ashkenazi, et al., Mol. Cell. 57, 219 (2015). https://doi.org/10.1016/j.molcel.2014.12.007

    Article  CAS  Google Scholar 

  95. K. R. Chi, Nat. Methods 6 (1), 15 (2009). https://doi.org/10.1038/nmeth.f.234

    Article  CAS  Google Scholar 

  96. S. W. Hell, Science (Washington, DC, U. S.) 316 (5828), 1153 (2007). https://doi.org/10.1126/science.1137395

    Article  CAS  Google Scholar 

  97. M. Melling, D. Karimian-Teherani, S. Mostler, et al., Microsc. Res. Tech. 64, 1 (2004). https://doi.org/10.1002/jemt.20045

    Article  Google Scholar 

  98. L. Bergmans, P. Moisiadis, B. van Meerbeek, et al., Int. Endod. J. 38, 775 (2005). https://doi.org/10.1111/j.1365-2591.2005.00999.x

    Article  CAS  Google Scholar 

  99. T. A. McKeown, S. T. Moss, and E. B. G. Jones, Mycol. Res. 100, 821 (1996). https://doi.org/10.1016/s0953-7562(96)80028-1

    Article  Google Scholar 

  100. M. Protasoni, M. de Eguileor, T. Congiu, et al., Tissue Cell. 35, 306 (2003). https://doi.org/10.1016/s0040-8166(03)00052-1

    Article  CAS  Google Scholar 

  101. N. F. Cheville and J. Stasko, Vet. Pathol. 51, 28 (2014). https://doi.org/10.1177/0300985813505114

    Article  CAS  Google Scholar 

  102. P. C. Hickey, S. R. Swift, M. G. Roca, et al., Method. Microbiol. 34, 63 (2004). https://doi.org/10.1016/s0580-9517(04)34003-1

    Article  Google Scholar 

  103. L. Chopinet, C. Formosa, M. P. Rols, et al., Micron 48, 26 (2013). https://doi.org/10.1016/j.micron.2013.02.003

    Article  CAS  Google Scholar 

  104. S. P. Collins, R. K. Pope, R. W. Scheetz, et al., Microsc. Res. Tech. 25, 398 (1993). https://doi.org/10.1002/jemt.1070250508

    Article  CAS  Google Scholar 

  105. C. Sánchez, D. Moore, and G. Díaz-Godínez, Mycologia 98, 682 (2006). https://doi.org/10.1080/15572536.2006.11832640

    Article  Google Scholar 

  106. K. Takeyasu, Atomic Force Microscopy in Nanobiology (Routledge, Taylor Francis, 2014), p. 458. https://doi.org/10.1201/b15671

    Book  Google Scholar 

  107. J. Seifert, J. Rheinlaender, P. Novak, et al., Langmuir 31, 6807 (2015). https://doi.org/10.1021/acs.langmuir.5b01124

    Article  CAS  Google Scholar 

  108. T. Tanaami, S. Otsuki, N. Tomosada, et al., Appl. Opt. 41, 4704 (2002). https://doi.org/10.1364/ao.41.004704

    Article  Google Scholar 

  109. D. Ossola, L. Dorwling-Carter, H. Dermutz, et al., Phys. Rev. Lett. 115, 238103 (2015). https://doi.org/10.1103/physrevlett.115.238103

    Article  Google Scholar 

  110. R. W. Clarke, P. Novak, A. Zhukov, et al., Soft Matter 12, 7953 (2016). https://doi.org/10.1039/c6sm01106c

    Article  CAS  Google Scholar 

Download references

Funding

The study was financed by the Russian Science Foundation (project no. 19-19-00626).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Savin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savin, N.A., Kolmogorov, V.S., Timoshenko, R.V. et al. Application of Nanotechnologies in Studying Yeast Structure in Candida. Nanotechnol Russia 16, 450–472 (2021). https://doi.org/10.1134/S263516762104011X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S263516762104011X

Navigation