Skip to main content
Log in

Nanomaterials in Plant Protection against Parasitic Nematodes

  • Published:
Biology Bulletin Reviews Aims and scope Submit manuscript

Abstract

A review of current data on the effect of nanoparticles on plant parasitic nematodes in the study in vitro and in planta and on plants infested with nematodes was carried out. Available data have shown that many nanoparticles of metals, metal oxides, and nonmetals have an effective nematicidal potential. According to the available data, nanoparticles can have a direct toxic effect on nematodes, reduce the infection of plants during seed pretreatment or spraying, and lead to inhibition of reproduction and development of the parasite in the roots, and their effectiveness may exceed known commercial nematicides. Some nanoparticles have an immunostimulatory effect on plants. Data on the mechanisms of action of nanoparticles on nematodes are presented. An important mechanism for the toxicity of nanoparticles to nematodes may be the generation of reactive oxygen species (oxidative stress). Exposure to nanoparticles increased the expression of target genes involved in oxidative stress and DNA damage repair. A small number of works have dealt with nanonematicides, which in the form of nanocapsules have proven to be very effective against endoparasitic nematodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Abasi, F., Raja, N.I., Mashwani, Z.U.R., et al., Biogenic silver nanoparticles as a stress alleviator in plants: A mechanistic overview, Molecules, 2022, vol. 27, p. 3378.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Abbassy, M.A., Abdel-Rasoul, M.A., Nassar, A.M.K., and Soliman, B.S.M., Nematicidal activity of silver nanoparticles of botanical products against root-knot nematode, Meloidogyne incognita, Arch. Phytopathol. Plant Prot., 2017, vol. 50, pp. 909–926.

    Article  CAS  Google Scholar 

  3. Abdellatif, K.F., Abdelfattah, R.H., and El-Ansary, M.S.M., Green nanoparticles engineering on root-knot nematode infecting eggplants and their effect on plant DNA modification, Iran. J. Biotechnol., 2016, vol. 14, pp. 250–259.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Adisa, I.O., Pullagurala, V.L.R., Peralta-Videa, J.R., et al., Recent advances in nano-enabled fertilizers and pesticides: A critical review of mechanisms of action, Environ. Sci.: Nano, 2019, vol. 6, pp. 2002–2030.

    CAS  Google Scholar 

  5. Ahamad, L. and Siddiqui, Z.A., Effects of silicon dioxide, zinc oxide and titanium dioxide nanoparticles on Meloidogyne incognita, Alternaria dauci and Rhizoctonia solani disease complex of carrot, Exp. Parasitol., 2021, vol. 230, p. 108176.

    Article  CAS  PubMed  Google Scholar 

  6. Akhter, G., Khan, A., Ali, S.G., et al., Antibacterial and nematicidal properties of biosynthesized Cu nanoparticles using extract of holoparasitic plant, SN Appl. Sci., 2020, vol. 2, p. 1268.

    Article  CAS  Google Scholar 

  7. Alamri, S., Nafady, N.A., El-Sagheer, A.M., et al., Current utility of arbuscular mycorrhizal fungi and hydroxyapatite nanoparticles in suppression of tomato root-knot nematode, Agronomy, 2022, vol. 12, p. 671.

    Article  CAS  Google Scholar 

  8. Alfy, H., Ghareeb, R.Y., and Farag, D.A., Impact of chitosan nanoparticles as insecticide and nematicide against Spodoptera littoralis, Locusta migratoria, and Meloidogyne incognita, Plant Cell Biotechnol. Mol. Biol., 2020, vol. 21, nos. 69–70, pp. 126–140.

    Google Scholar 

  9. Ardakani, A.S., Toxicity of silver, titanium and silicon nanoparticles on the root-knot nematode, Meloidogyne incognita, and growth parameters of tomato, Nematology, 2013, vol. 15, pp. 671–677.

    Article  CAS  Google Scholar 

  10. Baronia, R., Kumar, P., Singh, S.P., and Walia, R.K., Silver nanoparticles as a potential nematicide against Meloidogyne graminicola, J. Nematol., 2020, vol. 52, pp. 1–9.

    Article  PubMed  Google Scholar 

  11. Basso, M.F., Lourenco-Tessutti, I.T., Mendes, R.A.G., et al., MiDaf16-like and MiSkn1-like gene families are reliable targets to develop biotechnological tools for the control and management of Meloidogyne incognita, Sci. Rep., 2020, vol. 10, p. 6991.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Baycheva, O., Samaliev, H., Udalova, Z., et al., Selenium and its effect on plant-parasite system Meloidogyne arenaria—Tiny Tim tomatoes, Bulgarian Journal of Agricultural Science, 2018, vol. 24, no. 2, pp. 252–258.

    Google Scholar 

  13. Bernard, G.C., Fitch, J., Min, B., et al., Potential nematicidial activity of silver nanoparticles against root-knot nematode (Meloidogyne incognita), J. Compl. Alt. Med., 2019, vol. 2, no. 2.

  14. Buriak, J.M., Liz-Marzán, L.M., Parak, W.J., and Chen, X., Nano and plants, ACS Nano, 2022, vol. 16, no. 2, pp. 1681–1684.

    Article  CAS  Google Scholar 

  15. Cao, J., Guenther, R.H., Sit, T.L., et al., Development of abamectin loaded plant virus nanoparticles for efficacious plant parasitic nematode control, ACS Appl. Mater. Interfaces, 2015, vol. 7, рр. 9546−9553.

  16. Chariou, P.L. and Steinmetz, N.F., Delivery of pesticides to plant parasitic nematodes using tobacco mild green mosaic virus as a nanocarrier, ACS Nano, 2017, vol. 11, no. 5, pp. 4719–4730.

    Article  CAS  PubMed  Google Scholar 

  17. Chariou, P.L., Dogan, A.B., Welsh, A.G., et al., Soil mobility of synthetic and virus-based model nanopesticides, Nat. Nanotechnol., 2019, vol. 14, no. 7, pp. 712–718.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chitwood, D.J., Research on plant-parasitic nematode biology conducted by the United States Department of Agriculture-Agricultural Research Service, Pest Manage. Sci., 2003, vol. 59, pp. 748–753.

    Article  CAS  Google Scholar 

  19. Chopra, H., Bibi, S., Singh, I., et al., Green metallic nanoparticles: Biosynthesis to applications, Front. Bioeng. Biotechnol., 2022, vol. 10, p. 874742.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Costa, J.C., Lilley, C.J., and Urwin, P.E., Caenorhabditis elegans as a model for plant-parasitic nematodes, Nematology, 2007, vol. 9, no. 1, pp. 3–16. https://doi.org/10.1163/156854107779969664

    Article  CAS  Google Scholar 

  21. Cromwell, W.A., Yang, J., Starr, J.L., and Jo, Y.-K., Nematicidal effects of silver nanoparticles on root-knot nematode in bermudagrass, J. Nematol., 2014, vol. 46, pp. 261–266.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Danchin, E.G.J. and Perfus-Barbeoch, L., The genome sequence of Meloidogyne incognita unveils; mechanisms of adaptation to plant-parasitism in Metazoa, in Evolutionary Biology: Concept, Modeling, and Application, Pontarotti, P., Ed., Berlin, Heidelberg: Springer-Verlag, 2009, pp. 287–302.

    Google Scholar 

  23. Danish, M., Shahid, M., Ahamad, L., et al., Nano-pesticidal potential of Cassia fistula (L.) leaf synthesized silver nanoparticles (Ag@CfL-NPs): Deciphering the phytopathogenic inhibition and growth augmentation in Solanum lycopersicum (L.), Front. Microbiol., 2022, vol. 13, p. 985852.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Daragó, Á., The distribution of dagger nematodes species in Hungarian wind regions and newest control options, PhD Thesis, Keszthely, Hungary: Univ. Pannonia Georgikon, 2014.

  25. Davids, J.S., Ackah, M., Okoampah, E., et al., Biocontrol of bacteria associated with pine wilt nematode, Bursaphelenchus xylophilus by using plant mediated cold nanoparticles, Int. J. Agric. Biol., 2021, vol. 26, pp. 517–526.

    CAS  Google Scholar 

  26. Duguet, T.B., Charvet, C.L., Forrester, S.G., et al., Recent duplication and functional divergence in parasitic nematode levamisole-sensitive acetylcholine receptors, PLoS Neglected Trop. Dis. 2016, vol. 10, no. 7, p. e0004826.

    Article  Google Scholar 

  27. El-Ansary, M.S.M., Hamouda, R.A., and Elshamy, M.M., Using biosynthesized zinc oxide nanoparticles as a pesticide to alleviate the toxicity on banana infested with parasitic-nematode, Waste Biomass Valorization, 2022, vol. 13, pp. 405–415.

    Article  CAS  Google Scholar 

  28. El-Ashry, R.M., El-Saadony, M.T., El-Sobki, A.E.A., et al., Biological silicon nanoparticles maximize the efficiency of nematicides against biotic stress induced by Meloidogyne incognita in eggplant, Saudi J. Biol. Sci., 2022, vol. 29, pp. 920–932.

    Article  CAS  PubMed  Google Scholar 

  29. El-Batal, A.I., Attia, M.S., Nofel, M.M., and El-Sayyad, G.S., Potential nematicidal properties of silver boron nanoparticles: Synthesis, characterization, in vitro and in vivo root-knot nematode (Meloidogyne incognita) treatments, J. Clust. Sci., 2019, vol. 30, pp. 687–705.

    Article  CAS  Google Scholar 

  30. El-Deen, A.H.N. and El-Deeb, B.A., Effectiveness of silver nanoparticles against root-knot nematode, Meloidogyne incognita infecting tomato under greenhouse conditions, J. Agric. Sci., 2018, vol. 10, pp. 148–156.

    Google Scholar 

  31. Elarabi, N.I., Abdel-Rahman, A.A., Abdel-Haleem, H., and Abdel-Hakeem, M., Silver and zinc oxide nanoparticles disrupt essential parasitism, neuropeptidergic, and expansion-like proteins genes in Meloidogyne incognita, Exp. Parasitol., 2022, vol. 243, p. 108402.

    Article  CAS  PubMed  Google Scholar 

  32. Elmer, W.H. and White, J.C., The future of nanotechnology in plant pathology, Annu. Rev. Phytopathol., 2018, vol. 56, pp. 111–133.

    Article  CAS  PubMed  Google Scholar 

  33. Fabiyi, O., Olatunji, G., Atolani, O., and Olawuyi, O., Preparation of bio-nematicidal nanoparticles of Eucalyptus officinalis for the control of cyst nematode (Heterodera sacchari), J. Anim. Plant Sci., 2020, vol. 30, no. 5, pp. 1172–1177.

    CAS  Google Scholar 

  34. Fabiyi, O.A. and Olatunji, G.A., Application of green synthesis in nano particles preparation: Ficus mucoso extracts in the management of Meloidogyne incognita infecting groundnut Arachis hypogea, Indian J. Nematol., 2018, vol. 48, pp. 13–17.

    Google Scholar 

  35. Fabiyi, O.A., Claudius-Cole, A.O., Olatunji, G.A., et al., Response of Meloidogyne javanica to silver nanoparticle liquid from agricultural wastes, J. Agric. Sci., 2021, vol. 43, no. 3, pp. 507–517.

    Google Scholar 

  36. Fadaei Tehrani, A.A. and Fathi, Z., Effect of silver and zinc oxide nanoparticles on sugar beet cyst nematode (Heterodera schachtii), Journal of Applied Research in Plant Protection, 2020, vol. 8, no. 4, pp. 47–59.

    Google Scholar 

  37. Fouda, M.M.G., Abdelsalam, N.R., Gohar, I.M.A., et al., Utilization of high throughput microcrystalline cellulose decorated silver nanoparticles as an eco-nematicide on root-knot nematodes, Colloids Surf., B., 2020, vol. 188, p. 110805.

    Article  CAS  Google Scholar 

  38. Fu, Z., Chen, K., Li, L., et al., Spherical and spindle-like abamectin-loaded nanoparticles by flash nanoprecipitation for southern root-knot nematode control: Preparation and characterization, Nanomaterials, 2018, vol. 8, p. 449.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Ghareeb, R.Y., Alfy, H., Fahmy, A.A., et al., Utilization of Cladophora glomerata extract nanoparticles as eco-nematicide and enhancing the defense responses of tomato plants infected by Meloidogyne javanica, Sci. Rep., 2020a, vol. 10, p. 19968.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ghareeb, R.Y., El-Saedy, M.A.M., Fathy, M.M., et al., Green biosynthesized silver nanoparticles using macroalgae and their usage as a bioagent on Meloidogyne incognita, Plant Arch., 2020b, vol. 20, pp. 9682–9692.

    Google Scholar 

  41. Ghareeb, R.Y., El-Din, N.G., Shams, El-Din, et al., Nematicidal activity of seaweed-synthesized silver nanoparticles and extracts against Meloidogyne incognita on tomato plants, Sci. Rep., 2022, vol. 12, p. 3841.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gheysen, G. and Mitchum, M.G., Phytoparasitic nematode control of plant hormone pathways, Plant Physiol., 2019, vol. 179, pp. 1212–1226.

    Article  CAS  PubMed  Google Scholar 

  43. Gillet, F.X., Bournaud, C., Antonino, J.D., and Grossi-de-Sá, M.F., Plant-parasitic nematodes: Towards understanding molecular players in stress responses, Ann. Bot., 2017, vol. 119, no. 5, pp. 775–789.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Gkanatsiou, Ch., Ntalli, N., Menkissoglu-Spiroudi, U., and Dendrinou-Samara, C., Essential metal-based nanoparticles (copper/iron NPs) as potent nematicidal agents against Meloidogyne spp., Journal of Nanotechnology Research, 2019, vol. 1, pp. 044–058.

  45. Glushkova, A.V., Karelin, A.O., and Eremin, G.B., Hygienic assessment of personal protective equipment for workers exposed to engineering nanoparticles: A systematic review, Zdorov’e Naseleniya i Sreda Obitaniya, 2022, vol. 30, no. 5, pp. 86–93.

    Google Scholar 

  46. Gonzalez-Moragas, L., Roig, A., and Laromaine, A.C., Elegans as a tool for in vivo nanoparticle assessment, Adv. Colloid Interface Sci., 2015, vol. 219, pp. 10–26.

    Article  CAS  PubMed  Google Scholar 

  47. Haegeman, A., Mantelin, S., Jones, J.T., and Gheysen, G., Functional roles of effectors of plant-parasitic nematodes, Gene, 2012, vol. 492, pp. 19–31.

    Article  CAS  PubMed  Google Scholar 

  48. Hamed, S.M., Hagag, E.S., and El-Raouf, N., Green production of silver nanoparticles, evaluation of their nematicidal activity against Meloidogyne javanica and their impact on growth of faba bean, Beni-Suef Univ. J. Basic Appl. Sci., 2019, vol. 8, p. 9.

    Google Scholar 

  49. Hamid, A. and Saleem, S., Role of nanoparticles in management of plant pathogens and scope in plant transgenics for imparting disease resistance, Plant Prot. Sci., 2022, vol. 58, no. 3, pp. 173–184.

    Article  CAS  Google Scholar 

  50. Hassan, M.E.M., Zawam, H.S., El-Nahas, S.E.M., and Desoukey, A.F., Comparative study between silver nanoparticles and two nematicides against Meloidogyne incognita on tomato seedlings, Plant Pathol. J., 2016, vol. 15, pp. 144–151.

    Article  CAS  Google Scholar 

  51. Hayles, J., Johnson, L., Worthley, C., and Losic, D., Nanopesticides: A review of current research and perspectives, in New Pesticides and Soil Sensors, Grumezescu, A.M., Ed., London: Acad. Press, 2017, pp. 193–225.

    Google Scholar 

  52. Heflish, A.A., Hanfy, A.E., Ansari, M.J., et al., Green biosynthesized silver nanoparticles using Acalypha wilkesiana extract control root-knot nematode, J. King Saud Univ. Sci., 2021, vol. 33, no. 6, p. 101516.

    Article  Google Scholar 

  53. Ingale, A.G. and Chaudhari, A.N., Biogenic synthesis of nanoparticles and potential applications: An eco-friendly approach, J. Nanomed. Nanotechnol., 2013, vol. 4, pp. 1–7.

    Article  Google Scholar 

  54. IPPC Secretariat, Gullino, M.L., Albajes, R., et al., Scientific Review of the Impact of Climate Change on Plant Pests. A Global Challenge to Prevent and Mitigate Plant Pest Risks in Agriculture, Forestry and Ecosystems, Rome: FAO, 2021.

    Google Scholar 

  55. Jeevanandam, J., Barhoum, A., Chan, Y.S., et al., Review on nanoparticles and nanostructured materials: History, sources, toxicity and regulations, Beilstein J. Nanotechnol., 2018, vol. 9, pp. 1050–1074.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Jones, J., Haegeman, A., Danchin, E., et al., Top 10 plant-parasitic nematodes in molecular plant pathology, Mol. Plant Pathol., 2013, vol. 14, pp. 946–961.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Kalaba, M.H., Moghannem, S.A., El-Hawary, A.S., et al., Green synthesized ZnO nanoparticles mediated by Streptomyces plicatus: Characterizations, antimicrobial and nematicidal activities and cytogenetic effects, Plants, 2021, vol. 10, p. 1760.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kalaiselvi, D., Mohankumar, A., Shanmugam, G., et al., Green synthesis of silver nanoparticles using latex extract of Euphorbia tirucalli: A novel approach for the management of root knot nematode, Meloidogyne incognita, Crop Prot., 2019, vol. 117, pp. 108–114.

    Article  CAS  Google Scholar 

  59. Kapranova, K.A., Preparation of metal nanoparticles using the green method: A review, in Equipment and Technology of Modern Production, Proc. III All-Russ. Sci.-Pract. Conf. (Penza, April 25–26, 2022), Penza: Penzensk. Gos. Agrar. Univ., 2022, pp. 55–58.

  60. Khalil, A.E., Rahhal, M.M.H., El-Korany, A.E., and Balbaa, E.M., Effect of certain nanoparticles against root-knot nematode, Meloidogyne incognita, affecting, tomato plants in El-Behera governorate, Egypt, Journal of Agriculture and Environmental Sciences, 2018, vol. 17, no. 3, pp. 1–34.

    Google Scholar 

  61. Khalil, M.S., El-Aziz, M.H.A., and Selim, R., Physiological and morphological response of tomato plants to nano-chitosan used against bio-stress induced by root-knot nematode (Meloidogyne incognita) and tobacco mosaic tobamovirus (TMV), Eur. J. Plant Pathol., 2022, vol. 163, pp. 799–812.

    Article  CAS  Google Scholar 

  62. Khan, F., Ansari, T., Shariq, M., and Siddiqui, M.A., Nanotechnology: A new beginning to mitigate the effect of plant-parasitic nematodes in Innovative Approaches in the Diagnosis and Management of Crop Diseases, Singh, R.K. and Gopala, Eds., New York: Apple Acad. Press, 2021, vol. 3, pp. 21–45.

  63. Khan, M.R. and Siddiqui, Z.A., Use of silicon dioxide nanoparticles for the management of Meloidogyne incognita, Pectobacterium betavasculorum and Rhizoctonia solanidisease complex of beetroot (Beta vulgaris L.), Sci. Hortic., 2020, vol. 265, no. 2, p. 109211.

    Article  CAS  Google Scholar 

  64. Khan, M.R. and Siddiqui, Z.A., Efficacy of titanium dioxide nanoparticles in the management of disease complex of beetroot (Beta vulgaris L.) caused by Pectobacterium betavasculorum, Rhizoctonia solani, and Meloidogyne incognita, Gesunde Pflanz., 2021a, vol. 73, pp. 445–464.

    Article  CAS  Google Scholar 

  65. Khan, M.R. and Siddiqui, Z.A., Role of zinc oxide nanoparticles in the management of disease complex of beetroot (Beta vulgaris L.) caused by Pectobacterium betavasculorum, Meloidogyne incognita and Rhizoctonia solani, Hortic. Environ. Biotechnol., 2021b, vol. 62, no. 2, pp. 225–241.

    Article  CAS  Google Scholar 

  66. Khan, A., Mfarrej, M.F.B., Danish, M., et al., Synthesized copper oxide nanoparticles via the green route act as antagonists to pathogenic root knot nematode, Meloidogyne incognita, Green Chem. Lett. Rev., 2022, vol. 15, no. 3, pp. 491–507.

    Article  CAS  Google Scholar 

  67. Khan, A.U., Khan, M., Khan, A.A., et al., Effect of phyto-assisted synthesis of magnesium oxide nanoparticles (MgO-NPs) on bacteria and the root-knot nematode, Bioinorg. Chem. Appl., 2022, vol. 2022, p. 3973841.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Khan, M., Siddiqui, Z., Parveen, A., et al., Elucidating the role of silicon dioxide and titanium dioxide nanoparticles in mitigating the disease of the eggplant caused by Phomopsis vexans, Ralstonia solanacearum, and root-knot nematode Meloidogyne incognita, Nanotechnol. Rev., 2022a, vol. 11, pp. 1606–1619.

    Article  CAS  Google Scholar 

  69. Kong, M., Liang, J., White, J.C., et al., Biochar nanoparticle-induced plant immunity and its application with the elicitor methoxyindole in Nicotiana benthamiana, Environ. Sci.: Nano, 2022b, vol. 9, no. 20, pp. 3514–3524.

    CAS  Google Scholar 

  70. Landa, P., Positive effects of metallic nanoparticles on plants: Overview of involved mechanisms, Plant Physiol. Biochem., 2021, vol. 161, pp. 12–24.

    Article  CAS  PubMed  Google Scholar 

  71. Li, Y., Zhong, L., Zhang, L., et al., Research advances on the adverse effects of nanomaterials in a model organism, Caenorhabditis elegans, Environ. Toxicol. Chem., 2021, vol. 40, no. 9, pp. 2406–2424.

    Article  CAS  PubMed  Google Scholar 

  72. Li, Y., Ren, Q., Bo, T., et al., AWA and ASH homologous sensing genes of Meloidogyne incognita contribute to the tomato infection process, Pathogens, 2022, vol. 11, p. 1322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Lim, D., Roh, J.Y., Eom, H.J., et al., Oxidative stress related PMK-1 p38 MAPK activation as a mechanism of toxicity of silver nanoparticles on the reproduction of the nematode Caenohabditis elegans, Environ. Toxicol. Chem., 2012, vol. 31, pp. 585–592.

    Article  CAS  PubMed  Google Scholar 

  74. Marchiol, L., Filippi, A., Adamiano, A., et al., Influence of hydroxyapatite nanoparticles on germination and plant metabolism of tomato (Solanum lycopersicum L.): Preliminary evidence, Agronomy, 2019, vol. 9, pp. 1–17.

    Article  Google Scholar 

  75. McCarter, J.P., Mitreva, M.D., Martin, J., et al., Analysis and functional classification of transcripts from the nematode Meloidogyne incognita, Genome Biol., 2003, vol. 4, no. 4, p. R26.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Mitchum, M.G., Hussey, R.S., Baum, T.J., et al., Nematode effector proteins: An emerging paradigm of parasitism, New Phytol., 2013, vol. 199, pp. 879–894.

    Article  PubMed  Google Scholar 

  77. Mittal, D., Kaur, G., Singh, P., et al., Nanoparticle-based sustainable agriculture and food science: Recent advances and future outlook, Front. Nanotechnol., 2020, vol. 2, p. 579954.

    Article  Google Scholar 

  78. Mohamed, E.A., Elsharabasy, S.F., and Abdulsamad, D., Evaluation of in vitro nematicidal efficiency of copper nanoparticles against root-knot nematode Meloidogyne incognita, South Asian Journal of Parasitology, 2019, vol. 2, pp. 1–6.

    Google Scholar 

  79. Nassar, A.M.K., Effectiveness of silver nano-particles of extracts of Urtica urens (Urticaceae) against root-knot nematode Meloidogyne incognita, Asian J. Nematol., 2016, vol. 5, pp. 14–19.

    Article  Google Scholar 

  80. Oshunsanya, S.O., Nwosu, N.J., and Li, Y., Abiotic stress in agricultural crops under climatic conditions, in Sustainable Agriculture, Forest and Environmental Management, Jhariya, M.K., Banerjee, A., Meena, R.S., and Yadav, D.K., Eds., Singapore: Springer, 2019, pp. 71–100.

    Google Scholar 

  81. Palomares-Rius, J.E., Escobar, C., Cabrera, J., et al., Anatomical alterations in plant tissues induced by plant-parasitic nematodes, Front. Plant Sci., 2017, vol. 8, p. 1987.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Pankaj, N.A.S., Shakil, N.A., Kumar, J., et al., Bioefficacy evaluation of controlled release formulations based on amphiphilic nano-polymer of carbofuran against Meloidogyne incognita infecting tomato, J. Environ. Sci. Health, Part B, 2012, vol. 47, pp. 520–528.

    Article  CAS  Google Scholar 

  83. Qi, Z.H., Wan, S.Q., Zheng, X.L., and Zhang, S.Q., Study nano-microemulsion of clausenamide and nematicidal efficacy against root nematode Meloidogyne javanica, AGRIS, 2011, vol. 38, no. 9, pp. 95–102.

    Google Scholar 

  84. Rahman, S.U., Wang, X., Shahzad, M., et al., A review of the influence of nanoparticles on the physiological and biochemical attributes of plants with a focus on the absorption and translocation of toxic trace elements, Environ. Pollut., 2022, vol. 310, p. 119916.

    Article  CAS  PubMed  Google Scholar 

  85. Rani, K., Devi, N., Banakar, P., et al., Nematicidal potential of green silver nanoparticles synthesized using aqueous root extract of Glycyrrhiza glabra, Nanomaterials, 2022, vol. 12, p. 2966.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Rani, S., Kumari, N., and Sharma, V., Uptake, translocation, transformation and physiological effects of nanoparticles in plants, Arch. Agron. Soil Sci., 2022, vol. 69, no. 1, pp. 1–21.

    Google Scholar 

  87. Rosso, M.N., Hussey, R.S., Davis, E.L., et al., Nematode effector proteins: Targets and functions in plant parasitism, in Effectors in Plant-Microbe Interactions, Martin, F. and Kamoun, S., Eds., New York: Wiley-Blackwell Publ., 2012, pp. 327–354.

    Google Scholar 

  88. Savary, S., Willocquet, L., Pethybridge, S.J., et al., The global burden of pathogens and pests on major food crops, Nature Ecology & Evolution, 2019, vol. 3, no. 3, pp. 430–439.

    Article  Google Scholar 

  89. Shang, H., Zhang, H., Zhao, R., et al., Selenium nanoparticles are effective in penetrating pine and causing high oxidative damage to Bursaphelenchus xylophilus in pine wilt disease control, Pest Manage. Sci., 2022, vol. 78, no. 8, pp. 3704–3716. https://doi.org/10.1002/ps.7013

    Article  CAS  Google Scholar 

  90. Shekoohi, S.S., Charehgani, H., Abdollahi, M., and Rajabi, H.R., Combined effect of β-aminobutyric acid and silver nanoparticles on eggplants, Solanum melongena, infected with Meloidogyne javanica, Nematology, 2021, vol. 23, no. 9, pp. 1077–1092.

    Article  CAS  Google Scholar 

  91. Shivakumara, T.N., Dutta, T.K., Chaudhary, S., et al., Homologs of Caenorhabditis elegans chemosensory genes have roles in behavior and chemotaxis in the root-knot nematode Meloidogyne incognita, Mol. Plant-Microbe Interact., 2019, vol. 32, pp. 876–887.

    Article  CAS  PubMed  Google Scholar 

  92. Shoaib, R.M., Abdel-Razik, A.B., Ibrahim, M.M., et al., Impact of engineered nano silver on plant parasitic nematode and measurement of DNA damage, Egypt. J. Chem., 2022, vol. 65, no. 4, pp. 43–51.

    Google Scholar 

  93. Siddiqui, Z.A., Khan, A., Khan, M.R., and Abd-Allah, E.F., Effects of zinc oxide nanoparticles (ZnO NPs) and some plant pathogens on the growth and nodulation of lentil (Lens culinaris Medik.), Acta Phytopathol. Entomol. Hung., 2018, vol. 53, no. 2, pp. 195–212.

    Article  CAS  Google Scholar 

  94. Singh, S., Singh, B., and Singh, A.P., Nematodes: A threat to sustainability of agriculture, Procedia Environ. Sci., 2015, vol. 29, pp. 215–216.

    Article  Google Scholar 

  95. Soliman, B.S.M., Abbassy, M.A., Abdel-Rasoul, M.A., and Nassar, A.M.K., Efficacy of silver nanoparticles of extractives of Artemisia judaica against root-knot nematode, Journal of Environmental Studies and Researches, 2017, vol. 7, no. 2, pp. 1–13.

    Article  CAS  Google Scholar 

  96. Taha, E.H., Nematicidal effects of silver nanoparticles on root-knot nematodes (Meloidogyne incognita) in laboratory and screenhouse, Journal of Plant Protection and Pathology, 2016, vol. 7, pp. 333–337.

    Article  Google Scholar 

  97. Tariq, M., Choudhary, S.H., Singh, H., et al., Role of nanoparticles in abiotic stress. Ch. 17, in Technology in Agriculture, Ahmad, F. and Sultan, M., Eds., London: IntechOpen, 2021. https://doi.org/10.5772/intechopen.99928

  98. Tariq, M., Mohammad, K.N., Ahmed, B., et al., Biological synthesis of silver nanoparticles and prospects in plant disease management, Molecules, 2022, vol. 27, no. 15, p. 4754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Tauseef, A., Hisamuddin, Gupta, J., et al., Differential response of cowpea towards the CuO nanoparticles under Meloidogyne incognita stress, S. Afr. J. Bot., 2021a, vol. 139, pp. 175–182.

    Article  CAS  Google Scholar 

  100. Tauseef, A., Hisamuddin, Khalilullah, A., and Uddin, I., Role of MgO nanoparticles in the suppression of Meloidogyne incognita, infecting cowpea and improvement in plant growth and physiology, Exp. Parasitol., 2021b, vol. 220, p. 108045.

    Article  CAS  PubMed  Google Scholar 

  101. Thakur, R.K., Dhirta, B., and Shirkot, P., Studies on nano toxicity effect of gold nanoparticles on M. incognita and tomato plants growth and development, Annals of Nanoscience and Nanotechnology, 2018, vol. 2, no. 1, p. 1005.

    Google Scholar 

  102. Thiruvenkataswamy, S., Paulpandi, S., Narayanasamy, M., et al., Biosynthesis, characterization, nematicidal efficacy of silver nanoparticles synthesized using solanum nigrum fruit against root knot nematode Meloidogyne incognita, Nano Sci. Nano Technol.: Indian J., 2022, vol. 16, no. 1, pp. 140–148.

    CAS  Google Scholar 

  103. Tryfon, P., Kamou, N.N., Ntalli, N., et al., Coated Cu-doped ZnO and Cu nanoparticles as control agents against plant pathogenic fungi and nematodes, NanoImpact, 2022, vol. 28, p. 100430.

    Article  CAS  PubMed  Google Scholar 

  104. Udalova, Z.V., Folmanis, G.E., Khasanov, F.K., and Zinovieva, S.V., Selenium nanoparticles—An inducer of tomato resistance to the root-knot nematode Meloidogyne incognita (Kofoid et White, 1919) Chitwood 1949, Dokl. Biochem. Biophys., 2018, vol. 482, pp. 264–267.

    Article  CAS  PubMed  Google Scholar 

  105. Udalova, Z.V., Folmanis, G.E., Fedotov, M.A., et al., Effects of silicon nanoparticles on photosynthetic pigments and biogenic elements in tomato plants infected with root-knot nematode Meloidogyne incognita, Dokl. Biochem. Biophys., 2020, vol. 495, pp. 329–333.

    Article  CAS  PubMed  Google Scholar 

  106. Udalova, Z.V. and Zinovieva, S.V., Effects of silicon nanoparticles on the activity of antioxidant enzymes in tomato roots invaded by Meloidogyne incognita (Kofoid et White, 1919) Chitwood, 1949, Dokl. Biochem. Biophys., 2022, vol. 506, pp. 191–194.

    Article  CAS  PubMed  Google Scholar 

  107. Udalova, Zh.V. adn Zinovieva, S.V., Influence of foliar treatments of tomato plants with microelements on root-knot nematode infestation, Teoriya i Praktika Bor’by s Parazitarnymi Boleznyami, 2021, no. 22, pp. 520–525.

  108. Viktorov, A.G., Ecological and physiological features of Bt-plants causing outbreaks of secondary pests, Russ. J. Plant Physiol., 2017, vol. 64, no. 4, pp. 457–463.

    Article  CAS  Google Scholar 

  109. Wang, J., Hao, K., and Yu, F., Field application of nanoliposomes delivered quercetin by inhibiting specific hsp70 gene expression against plant virus disease, J. Nanobiotechnol., 2022, vol. 20, p. 16.

    Article  Google Scholar 

  110. Wang, L., Ning, C., Pan, T., and Cai, K., Role of silica nanoparticles in abiotic and biotic stress tolerance in plants: A review, Int. J. Mol. Sci., 2022, vol. 23, p. 1947.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Wing, I.S., De Cian, E., and Mistry, M.N., Global vulnerability of crop yields to climate change, Journal of Environmental Economics and Management, 2021, vol. 109, no. 02462, pp. 1–18.

    Article  Google Scholar 

  112. Worrall, E.A., Hamid, A., Mody, K.T., et al., Nanotechnology for plant disease management, Agronomy, 2018, vol. 8, no. 12, p. 285.

    Article  CAS  Google Scholar 

  113. Wu, T., Xu, H., Liang, X., and Tang, M., Caenorhabditis elegans as a complete model organism for biosafety assessment of nanoparticles, Chemosphere, 2019, vol. 221, pp. 708–726.

    Article  CAS  PubMed  Google Scholar 

  114. Yang, W., Peters, J.I., and Williams, R.O., Inhaled nanoparticles—A current review, Int. J. Pharm., 2008, vol. 356, pp. 239–247.

    Article  CAS  PubMed  Google Scholar 

  115. Yin, Y.H., Guo, Q.M., Han, Y., et al., Preparation, characterization and nematicidal activity of lansiumamide B nano-capsules, J. Integr. Agric., 2012, vol. 11, pp. 1151–1158.

    Article  CAS  Google Scholar 

  116. Yu, J., Yu, X., Li, C., et al., Silicon mediated plant immunity against nematodes: Summarizing the underline defense mechanisms in plant nematodes interaction, Int. J. Mol. Sci., 2022, vol. 23, p. 14026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Zhang, D., Liu, G., Jing, T., et al., Lignin-modified electronegative epoxy resin nanocarriers effectively deliver pesticides against plant root-knot nematodes (Meloidogyne incognita), J. Agric. Food Chem., 2020, vol. 68, pp. 13562–13572.

    Article  CAS  PubMed  Google Scholar 

  118. Zhao, Y., Zhou, Q., Zou, C., et al., Repulsive response of Meloidogyne incognita induced by biocontrol bacteria and its effect on interspecific interactions, Front. Microbiol., 2022, vol. 13, p. 994941.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Zinovieva, S.V., Fitoparaziticheskie nematody Rossii (Phytoparasitic Nematodes of Russia), Zinov’ev, S.V. and Chizhov, V.N., Eds., Moscow: KMK, 2012.

  120. Zinovieva, S.V., Udalova, Zh.V., and Khasanov, F.K., The effect of nanosilicon on SA-mediated plant defense reactions in response to root-knot nematode invasion, in Phenolic Compounds: Fundamental and Applied Aspects, Proc. XI Int. Symp. (Moscow, April 11–15, 2022), Moscow: Pero, 2022, p. 98.

  121. Zohra, E., Ikram, M., Omar, A.A., et al., Potential applications of biogenic selenium nanoparticles in alleviating biotic and abiotic stresses in plants: A comprehensive insight on the mechanistic approach and future perspectives, Green Process. Synth., 2021, vol. 10, pp. 456–475.

    Article  CAS  Google Scholar 

Download references

Funding

The analysis of literature sources and writing of the article were carried out within the framework of the state task of the Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, no. 0109-2018-0075.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Zinovieva.

Ethics declarations

The authors declare that they have no conflicts of interest.

The article does not contain any studies involving humans and animals in experiments performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zinovieva, S.V., Udalova, Z.V. & Khasanova, O.S. Nanomaterials in Plant Protection against Parasitic Nematodes. Biol Bull Rev 13, 703–722 (2023). https://doi.org/10.1134/S2079086423060178

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079086423060178

Keywords:

Navigation