Skip to main content
Log in

Influence of Ion Treatment Modes on the Physical and Mechanical Properties of Zirconia Ceramics

  • PHYSICOCHEMICAL FUNDAMENTALS OF CREATING MATERIALS AND TECHNOLOGIES
  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

The article considers the influence of the treatment modes with N2+ and Ar+ ions beams on the physical and mechanical properties of zirconia ceramics. Surface modification of zirconia ceramics was performed using two modes of ion treatment—pulsed and continuous. The pulsed mode of treatment with N2+ ions was realized at an accelerating voltage of 250–300 kV, current density j = 150–200 A/cm2, and energy density W = (3.5 and 5) ± 5% J/cm2. The continuous mode of treatment with Ar+ ions was realized at an accelerating voltage of 30 kV and an ion current density of 300 and 500 μA/cm2. The fluence of the Ar+ ion beam varied from 1016 to 1018 cm–2. It is established that the pulsed mode of ion treatment leads to the melting and recrystallization of the surface of ceramics. It is shown that this treatment leads to a violation of the oxygen stoichiometry in ceramics and, as a result, there is an appearance of electrical conductivity in the near-surface layers; the layers of zirconia ceramics become conductive. It is established that the continuous mode of ion treatment does not lead to the melting and recrystallization of the ceramic surface but is accompanied by its slight etching. It is shown that, under the action of continuous ion treatment, the microhardness increases (by 14%). Hardening of the surface layers of ceramics is observed at a depth that exceeds the average projected range of Ar+ ion by 103 times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Chernov, V.M., Radiation properties of the metal structural materials during low-temperature damaging irradiation, Perspekt. Mater., 2018, no. 5, pp. 23–40.

  2. Gribkov, V.A., Demin, A.S., Demina, E.L., Epifanov, N.A., Latyshev, S.V., Lyakhovitsky, M.M., Maslyayev, S.A., Morozov, E.V., Pimenov, V.N., Sasinovskaya, I.P., Sirotinkin, V.P., Sprygin, G.S., and Timoshina, M.I., Specifics of damageability of the silicon single crystal under exposure of powerful plasma streams and fast helium ions, Inorg. Mater.: Appl. Res., 2020, vol. 11, pp. 349–358. https://doi.org/10.1134/S2075113320020136

    Article  Google Scholar 

  3. Karsch, L., Beyreuther, E., Enghardt, W., Gotz, M., Masood, U., Schramm, U., Zeil, K., and Pawelke, J., Towards ion beam therapy based on laser plasma accelerators, Acta Oncol., 2017, vol. 56, no. 11, pp. 1359–1366.

    Article  Google Scholar 

  4. Yastrebinskii, R.N., Bondarenko, G.G., and Pavlenko, V.I., Radiation hardening of constructional cement–magnetite–serpentinite composite under gamma irradiation at increased dose, Inorg. Mater.: Appl. Res., 2017, vol. 8, no. 5, pp. 691–695.

    Article  Google Scholar 

  5. Demina, E.V., Gribkov, V.A., Prusakova, M.D., Pime-nov, V.N., Morozov, E.V., Maslyaev, S.A., Voronin, A.V., Gusev, V.K., Garkusha, I.E., Makhlai, V.A., Laas, T., Shirokova, V., and Vali, B., Surface structure transformation in double forged tungsten upon single and sequenced irradiation using different types of radiation facilities, Inorg. Mater.: Appl. Res., 2018, vol. 9, pp. 832–847. https://doi.org/10.1134/S2075113318050088

    Article  Google Scholar 

  6. Gromov, V.E., Gorbunov, S.V., Ivanov, Y.F., Vorobiev, S.V., and Konovalov, S.V., Formation of surface gradient structural-phase states under electronbeam treatment of stainless steel, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech., 2011, vol. 5, pp. 974–978.

    Article  CAS  Google Scholar 

  7. Ghyngazov, S.A., Zirconia ceramics processing by intense electron and ion beams, Nucl. Instrum. Methods Phys. Res., Sect. B, 2018, vol. 435, pp. 190–193.

    CAS  Google Scholar 

  8. Ivanov, Yu.F., Koval, N.N., Gorbunov, S.V., Vorobyov, S.V., Konovalov, S.V., and Gromov, V.E., Multicyclic fatigue of stainless steel treated by a high-intensity electron beam: Surface layer structure, Russ. Phys. J., 2011, vol. 54, pp. 575–583.

    Article  CAS  Google Scholar 

  9. Zehra Nur Ozer, Electron beam irradiation processing for industrial and medical applications, EPJ Web Conf., 2017, vol. 154, art. ID 01019.

  10. Ivanov, Y.F., Alsaraeva, K.V., Gromov, V.E., Popova, N.A., and Konovalov, S.V., Fatigue life of silumin treated with a high-intensity pulsed electron beam, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech., 2015, vol. 9, no. 5, pp. 1056–1059.

    Article  CAS  Google Scholar 

  11. Yea, C., Xue, J., Liu, T., Shu, R., Yan, Y., Liao, Y., Ren, Q., Rana, G., Sun, K., Jiang, L., Xiu, P., and Wangce, L., The microstructure evolution in a SiCf/SiC composite under triple ion beam irradiation, Ceram. Int., 2020, vol. 46, no. 7, pp. 9901–9906.

    Article  Google Scholar 

  12. Ryabchikov, A.I., Progress in low energy high intensity ion implantation method development, Surf. Coat. Technol., 2020, vol. 388, art. ID 125561.

  13. Demin, A.S., Morozov, E.V., Maslyaev, S.A., Pimenov, V.N., Gribkov, V.A., Demina, E.V., Sasinovskaya, I.P., Sirotinkin, V.P., Sprygin, U.S., Bondarenko, G.G., Tikhonov, A.N., and Gaidar, A.I., The influence of a powerful stream of deuterium ions and deuterium plasma on the structural state of the surface layer of titanium, Inorg. Mater.: Appl. Res., 2017, no. 3, pp. 412–418.

  14. Zatsepin, D.A., Cholakh, S.O., and Vainshtein, I.A., Ionnaya modifikatsiya funktsional’nykh materialov (Ion Modification of Functional Materials), Ekaterinburg: Ural. Fed. Univ., 2014.

  15. Elke, W. and Werner, W., Ion Beam Modification of Solids, New York: Springer, 2016.

    Google Scholar 

  16. Was, G.S, Fundamentals of Radiation Materials Science: Metals and Alloys, Springer, 2016.

    Google Scholar 

  17. Ghyngazov, S., Ovchinnikov, V., Kostenko, V., Gushchina, N., and Makhinko, F., Surface modification of ZrO2–3Y2O3 ceramics with continuous Ar+ ion beams, Surf. Coat. Technol., 2020, vol. 388, art. ID 125598.

  18. Konusov, F., Pavlov, S., Lauk, A., Tarbokov, V., Karpov, S., Karpov, V., Gadirov, R., Kashkarov, E., and Remnev, G., Effect of short-pulsed 200 keV C+ ion beam and continuous 350 keV He2+ ion beam irradiation on optical properties of Al–Si–N coatings with a various Si content, Surf. Coat. Technol., 2020, vol. 389, art. ID 125564.

  19. Bedin, S.A., Ovchinnikov, V.V., Remnev, G.E., et al., Radiation stability of metal Fe0.56Ni0.44 nanowires exposed to powerful pulsed ion beams, Phys. Met. Metallogr., 2018, vol. 119, pp. 44–51.

    Article  CAS  Google Scholar 

  20. Bayu Aji, L.B., Wallace, J.B., and Kucheyev, S.O., Radiation defect dynamics in 3C-, 4H-, and 6H-SiC studied by pulsed ion beams, Nucl. Instrum. Methods Phys. Res., Sect. B, 2018, vol. 435, pp. 8–11.

    CAS  Google Scholar 

  21. Ghyngazov, S., Kostenko, V., Shevelev, S., Lysenko, E., and Surzhikov, A., Ion modification of alumina ceramics, Nucl. Instrum. Methods Phys. Res., Sect. B, 2020, vol. 464, pp. 89–94.

    CAS  Google Scholar 

  22. Mei, X., Zhang, X., Liu, X., and Wang, Y., Effect on structure and mechanical property of tungsten irradiated by high intensity pulsed ion beam, Nucl. Instrum. Methods Phys. Res., Sect. B, 2017, vol. 406, pp. 697–702.

    CAS  Google Scholar 

  23. Ovchinnikov, V.V., Nanoscale dynamic and long-range effects under cascade-forming irradiation, Surf. Coat. Technol., 2018, vol. 355, pp. 65–83.

    Article  CAS  Google Scholar 

  24. Zhu, H., Ma, Y., Wei, T., Li, H.J., Aughterson, R., and Lumpkin, G., The formation and Kr-ion irradiation behaviour of new microstructural features in additively manufactured titanium aluminium alloy, Add. Manuf., 2019, vol. 29, art. ID 100766.

  25. Jin, K., Velisa, G., Xue, H., Yang, T., Bei, H., Weber, W.J., Wang, L., and Zhang, Y., Channeling analysis in studying ion irradiation damage in materials containing various types of defects, J. Nucl. Mater., 2019, vol. 517, pp. 9–16.

    Article  CAS  Google Scholar 

  26. Slobodyan, M.S., Pavlov, S.K., and Remnev, G.E., Corrosion and high-temperature steam oxidation of E110 alloy and its laser welds after ion irradiation, Corros. Sci., 2019, vol. 152, pp. 60–74.

    Article  CAS  Google Scholar 

  27. Zou, H., Zhang, L., Guan, T., Zhang, X., Remnev, G.E., Pavlov, S.K., Wang, Y., and Mei, X., Effect on mechanics properties and microstructure of molybdenum by high intensity pulsed ion beam irradiation, Surf. Coat. Technol., 2020, vol. 384, art. ID 125333.

  28. Yu, X., Zhong, H., Zhang, Z., Shen, J., Zhang, J., Cui, X., Liang, G., Zhang, X., Zhang, G., Yan S., Wen, P., and Le, X., Hydrodynamic effects on the surface morphology evolution of aluminum alloy under intense pulsed ion beam irradiation, Nucl. Instrum. Methods Phys. Res., Sect. B, 2017, vol. 409, pp. 158–162.

    CAS  Google Scholar 

  29. Zhang, J., Yu, X., Zhong, H., Wei, B., Qu, M., Shen, J., Zhang, Y., Yan, S., Zhang, G., Zhang, X., and Le, X., The ablation mass of metals by intense pulsed ion beam irradiation, Nucl. Instrum. Methods Phys. Res., Sect. B, 2015, vol. 365, pp. 210–213.

    CAS  Google Scholar 

  30. Borovitskaya, I.V., Gribkov, V.A., Grigorovich, K.V., Demin, A.S., Maslyaev, S.A., Morozov, E.V., Pimenov, V.N., Sprygin, G.S., Zepelev, A.B., Gusakov, M.S., Logachev, I.A., Bondarenko, G.G., and Gaidar, A.I., Effect of pulsed helium ion fluxes and helium plasma on the inconel 718 alloy, Russ. Metall. (Metally), 2018, vol. 2018, pp. 826–834.

    Article  Google Scholar 

  31. Remnev, G.E., Isakov, I.F., Pushkarev, A.I., et al., High intensity pulsed ion beam sources and their industrial applications, Surf. Coat. Technol., 1999, vol. 114, pp. 206–212.

    Article  CAS  Google Scholar 

  32. Romanov, Yu.I., Gushchina, N.V., Ovchinnikov, V.V., Makhinko, F.F., Stepanov, A.V., Medvedev, A.I., Starodubtsev, Yu.N., Belozerov, V.Ya., and Loginov, B.A., The effect of ion irradiation on nanocrystallization and surface relief of a ribbon from Fe72.5Cu1Nb2Mo1.5Si14B9, Russ. Phys. J., 2018, vol. 60, pp. 1823–1831.

    Article  CAS  Google Scholar 

  33. Ovchinnikov, V.V., Gushchina, N.V., Gapontseva, T.M., Chashchukhina, T.I., Voronova, L.M., Pilyugin, V.P., and Degtyarev, M.V., Optimal deformation and ion irradiation modes for production of a uniform submicrograin structure in molybdenum, High Pressure Res., 2015, vol. 35, no. 3, pp. 300–309.

    Article  CAS  Google Scholar 

  34. Ryabchikov, A., Shevelev, A., Sivin, D., Kashkarov, E., Bozhko, I., and Stepanov, I., High intensity low aluminum ion energy implantation into titanium, Proc. 22nd Int. Conf. on Ion Implantation Technology, September 16–21, 2018, Würzburg, Germany, pp. 364–367.

  35. Maslyaev, S.A., Morozov, E.V., Romakhin, P.A., Pimenov, V.N., Gribkov, V.A., Tikhonov, A.N., Bondarenko, G.G., Dubrovsky, A.V., Kazilin, E.E., Sasinovskaya, I.P., and Sinitsyna, O.V., Damage of Al2O3 ceramics under the action of pulsed ion and plasma fluxes and laser irradiation, Inorg. Mater.: Appl. Res., 2016, no. 3, pp. 330–339.

  36. Ghyngazov, S., Pavlov, S., Kostenko, V., and Surzhikov, A., Ion processing of alumina ceramics by high-power pulsed beam, Nucl. Instrum. Methods Phys. Res., Sect. B, 2018, vol. 120, pp. 120–123.

    Google Scholar 

  37. Ajay Kumar Mishra, Smart Ceramics: Preparation, Properties, and Applications, Stanford, 2018.

    Book  Google Scholar 

  38. Emelyanov, A.V., Nikiruy, K.E., Demin, V.A., Rylkov, V.V., Belov, A.I., Korolev, D.S., Gryaznov, E.G., Pavlov, D.A., Gorshkov, O.N., Mikhaylov, A.N., and Dimitrakis, P., Yttriastabilized zirconia cross-point memristive devices for neuromorphic applications, Microelectron. Eng., 2019, vol. 215, art. ID 110988.

    Article  CAS  Google Scholar 

  39. Chmielewski, T. and Golański, D., Selected properties of Ti coatings deposited on ceramic AlN substrates by thermal spraying, Weld. Int., 2013, vol. 27, no. 8, pp. 604–609.

    Article  Google Scholar 

  40. Komarov, S.V. and Romankov, S.E., Mechanical metallization of alumina substrate through shot impact treatment, J. Eur. Ceram. Soc., 2014, vol. 34, no. 2, pp. 391–399.

    Article  CAS  Google Scholar 

  41. Goreev, A.K., Burdovitsin, V.A., Klimov, A.S., and Oks, E.M., Electron-beam welding of ceramics with metal by using fore-vacuum plasma electron source, Inorg. Mater.: Appl. Res., 2012, vol. 3, pp. 446–449.

    Article  Google Scholar 

  42. Gyngazov, S.A., Ryabchikov, A.I., Kostenko, V., and Sivin, D.O., Aluminum ion beam treatment of zirconium ceramics, Russ. Phys. J., 2018, vol. 61, pp. 1513–1519.

    Article  CAS  Google Scholar 

  43. Frangulyan, T.S. and Ghyngazov, S.A., Ion treatment effect on the electrical conductivity of the surface layers of polycrystalline oxide semiconductors, Sistemy. Metody. Tekhnol., 2014, no. 1(21), pp. 107–111.

  44. Sathyaseelan, B., Manikandan, E., Baskaran, I., Senthilnathan, K., Sivakumar, K., Moodley, M.K., Ladchumananandasivam, R., and Maaza, M., Studies on structural and optical properties of ZrO2 nanopowder for opto-electronic applications, J. Alloys Compd., 2017, vol. 694, pp. 556–559.

    Article  CAS  Google Scholar 

  45. Binner, J., Bala, V., Anish, P., Ketharam, A., and Bala, R., Compositional effects in nanostructured yttria partially stabilized zirconia, Int. J. Appl. Ceram. Technol., 2011, no. 8, pp. 766–782.

  46. Surzhikov, A.P., Ghyngazov, S.A., Frangulyan, T.S., Vasil’ev, I.P., and Chernyavskii, A.V., Investigation of sintering behavior of ZrO2 (Y) ceramic green body by means of nonisothermal dilatometry and thermokinetic analysis, J. Therm. Anal. Calorim., 2017, vol. 128, pp. 787–794.

    Article  CAS  Google Scholar 

  47. Limarga, A.M., Iveland, J., Gentleman, M., Lipkin, D.M., and Clarke, D.R., The use of Larson–Miller parameters to monitor the evolution of Raman lines of tetragonal zirconia with high temperature aging, Acta Mater., 2011, vol. 59, no. 3, pp. 1162–1167.

    Article  CAS  Google Scholar 

  48. Larin, V.C., Kondaкov, V.M., Maliy, E.N., Matyukha, V.A., Dedov, N.V., Kutyavin, E.M., Sennikov, Yu.N., Stepanov, I.A., and Ivanov, Yu.F., Plasmochemical method for obtaining nano-metal oxide powders and perspective directions of their application, Izv. Vyssh. Uchebn. Zaved., Tsvetn. Metall., 2003, no. 5, pp. 59–64.

  49. Frangulyan, T.S., Vasil’ev, I.P., and Ghyngazov, S.A., Effect of grinding and subsequent thermal annealing on phase composition of subsurface layers of zirconia ceramics, Ceram. Int., 2018, vol. 44, pp. 2501–2503.

    Article  CAS  Google Scholar 

  50. Zhu, X.P., Lei, M.K., and Ma, T.C., Characterization of a high-intensity bipolar-mode pulsed ion source for surface modification of materials, Rev. Sci. Instrum., 2002, vol. 73, pp. 1728–1733.

    Article  CAS  Google Scholar 

  51. Pushkarev, A.I., Egorova, Y.I., Prima, A.I., Korusenko, P.M., and Nesov, S.N., Generatsiya, diagnostika i primenenie moshchnykh ionnykh puchkov s vysokoi plotnost’yu energii (Generation, Diagnostics and Application of Powerful Ion Beams with High Energy Density), Novosibirsk: ANS SibAK, 2019.

  52. Gavrilov, N.V., Mesyats, G.A., Nikulin, S.P., Radkovskii, G.V., Eklind, A., Perry, A.J., and Treglio, J.R., A new broad beam gas ion source for industrial applications, J. Vac. Sci. Technol., 1996, no. 14, pp. 1050–1055.

  53. Miroshкin, V.P., Panova, Ya.I., and Pasynкov, V.V., Dielectric relaxation in polycrystalline ferrites, Phys. Status Solidi A, 1981, vol. 66, no. 2, pp. 779–782.

    Article  Google Scholar 

Download references

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation within the scope of the Nauka program (project no. FSWW-2020-0008) and competitiveness improvement programs of Tomsk Polytechnic University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. A. Ghyngazov, V. A. Kostenko or A. K. Khassenov.

Additional information

Translated by N. Saetova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghyngazov, S.A., Kostenko, V.A. & Khassenov, A.K. Influence of Ion Treatment Modes on the Physical and Mechanical Properties of Zirconia Ceramics. Inorg. Mater. Appl. Res. 12, 262–270 (2021). https://doi.org/10.1134/S2075113321020179

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113321020179

Keywords:

Navigation