Skip to main content
Log in

Adsorption Isotherms of Enantiomer on Hippuric Acid Crystals Obtained under Viedma Ripening Conditions Using a Temperature Gradient

  • INVESTIGATION METHODS FOR PHYSICOCHEMICAL SYSTEMS
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

The work is devoted to the study of the capacity for chiral recognition during the adsorption process of hippuric acid crystals obtained by the temperature gradient method under Viedma ripening conditions. This method is distinguished by the fact that the primary violation of chiral equilibrium between the nuclei formed during crystallization is not caused by the mechanical action of the stirrer but by crystallization at low temperatures. Limonenes and α-pinenes were used as test enantiomers. Adsorption isotherms were obtained using inverse gas chromatography, and their analysis made it possible to establish the chiral recognition ability of the surface. It was shown that both the enantioselectivity and adsorption capability of the synthesized hippuric acid crystals were significantly higher than those of crystals obtained under classical Viedma ripening conditions. High surface heterogeneity is probably the reason for this phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. Bonner, W.A., Origins Life Evol. Biospheres, 1995, vol. 25, p. 175.

    Article  CAS  Google Scholar 

  2. Blackmond, D.G., Cold Spring Harbor Perspect. Biol., 2019, vol. 11, p. a032540.

    Article  CAS  Google Scholar 

  3. Davankov, V.A., Symmetry, 2018, vol. 10, p. 749.

    Article  CAS  Google Scholar 

  4. Davankov, V.A., Symmetry, 2021, vol. 13, p. 1918.

    Article  CAS  Google Scholar 

  5. Gus’kov, Yu.V., Shayakhmetova, R.K., Allayarova, D.A., et al., Phys. Chem. Chem. Phys., 2021, vol. 23, p. 11968.

    Article  Google Scholar 

  6. Ribo, J.M. and Hochberg, D., Symmetry, 2019, vol. 11, p. 814.

    Article  CAS  Google Scholar 

  7. Bailey, J., Chrysostomou, A., Hough, J., et al., Science, 1998, vol. 281, p. 672.

    Article  Google Scholar 

  8. Myrgorodska, I., Javelle, T., Meinert, C., and Meierhenrich, U.J., Isr. J. Chem., 2016, vol. 56, nos. 11–12, p. 1016.

    Article  CAS  Google Scholar 

  9. Ribo, J.M., El-Hachemi, Z., and Crusats, J., Rend. Lincei Sci. Fis. Nat., 2013, vol. 24, p. 197.

    Article  Google Scholar 

  10. Sang, Y. and Liu, M., Symmetry, 2019, vol. 11, p. 950.

    Article  CAS  Google Scholar 

  11. Shen, Z., Wang, T., and Liu, M., Angew. Chem., Int. Ed., 2014, vol. 53, p. 13424.

    Article  CAS  Google Scholar 

  12. Zhang, Y., Chen, P., and Liu, M., Chem.–Eur. J., 2008, vol. 14, p. 1793.

    Article  CAS  Google Scholar 

  13. Davankov, V., Isr. J. Chem., 2016, vol. 56, nos. 11–12, p. 1036.

    Article  CAS  Google Scholar 

  14. Davankov, V.A., Sorbtsionnye Khromatogr. Protsessy, 2022, vol. 22, no. 4, p. 552.

    Google Scholar 

  15. Percec, V. and Leowanawat, P., Isr. J. Chem., 2011, vol. 51, nos. 1107–1117, p. 1107.

  16. Frank, F.C., Biochim. Biophys. Acta, 1953, vol. 11, p. 459.

    Article  CAS  Google Scholar 

  17. Soai, K., Shibata, T., Morioka, H., and Choji, K., Nature, 1995, vol. 378, p. 767.

    Article  CAS  Google Scholar 

  18. Soai, K., Proc. Jpn. Acad., Ser. B, 2019, vol. 95, no. 3, p. 89.

    CAS  Google Scholar 

  19. Kondepudi, D.K., Kaufman, R.J., and Singh, N., Science, 1990, vol. 250, p. 975.

    Article  CAS  Google Scholar 

  20. Kondepudi, D.K., Digits, J., and Bullock, K., Chirality, 1995, vol. 7, p. 62.

    Article  CAS  Google Scholar 

  21. Viedma, C., Phys. Rev. Lett., 2005, vol. 94, p. 065504.

    Article  Google Scholar 

  22. Sogutoglu, L.-C., Steendam, R.R.E., Meekes, H., et al., Chem. Soc. Rev., 2015, vol. 44, p. 6723.

    Article  Google Scholar 

  23. Viedma, C. and Cintas, P., Chem. Commun., 2011, vol. 47, p. 12786.

    Article  CAS  Google Scholar 

  24. Zinovyev, I., Ermolaeva, E., Sharafutdinova, Y., et al., Symmetry, 2023, vol. 15, p. 498.

    Article  CAS  Google Scholar 

  25. Gus’kov, V.Y., Gallyamova, G.A., Sairanova, N.I., et al., Phys. Chem. Chem. Phys., 2022, vol. 24, p. 26785.

    Article  Google Scholar 

  26. Gus’kov, V.Y., Shayakhmetova, R.K., Allayarova, D.A., et al., Phys. Chem. Chem. Phys., 2021, vol. 23, p. 11968.

    Article  Google Scholar 

  27. Gus’kov, V.Yu., Allayarova, D.A., Garipova, G.Z., and Pavlova, I.N., New J. Chem., 2020, vol. 44, p. 17769.

    Article  Google Scholar 

  28. McLaughlin, D.T., Nguyen, T.P.T., Mengnjo, L., et al., Cryst. Growth Des., 2014, vol. 14, p. 1067.

    Article  CAS  Google Scholar 

  29. Kawasaki, T., Suzuki, K., Hatase, K., et al., Chem. Commun., 2006, no. 17, p. 1869. https://doi.org/10.1039/b602442d

  30. Kiselev, A.V. and Yashin, Ya.I., Gazo-adsorbtsionnaya khromatografiya (Gas Adsorption Chromatography), Moscow: Khimiya, 1967.

  31. Gus’kov, V.Y., Gainullina, Y.Y., Musina, R.I., et al., Sep. Sci. Technol., 2021, vol. 56, no. 3, p. 527.

    Article  Google Scholar 

Download references

Funding

This work was supported by Russian Scientific Foundation, project no. 19-73-10079.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Yu. Gus’kov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by E. Khozina

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akhatova, G.I., Gus’kov, V.Y. Adsorption Isotherms of Enantiomer on Hippuric Acid Crystals Obtained under Viedma Ripening Conditions Using a Temperature Gradient. Prot Met Phys Chem Surf 59, 1132–1138 (2023). https://doi.org/10.1134/S2070205123701307

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205123701307

Keywords:

Navigation