Skip to main content
Log in

On the Electrochemical Deposition and Properties of Nickel-Based Composite Coatings

  • NEW SUBSTANCES, MATERIALS, AND COATINGS
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

Nickel-based composite electrochemical coatings (CECs) modified with graphite nitrate have been obtained. Their microstructure and functional properties (sliding friction coefficient and protective ability) have been studied. It has been found that when a dispersion of graphite nitrate is introduced into a sulfate–chloride electrolyte for nickel plating, the sliding friction coefficient of the formed CECs decreases by half, and the range of potentials of the passive state of these composite coatings increases by 1.26–1.32 times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Antropov, L.I. and Lebedinskii, Yu.N., Kompozitsionnye elektrokhimicheskie pokrytiya i materialy (Composite Electrochemical Coatings and Materials), Kiev: Tekhnika, 1986.

  2. Saifullin, R.S., Fizikokhimiya neorganicheskikh polimernykh i kompozitsionnykh materialov (Physical Chemistry of Inorganic Polymer and Composite Materials), Moscow: Khimiya, 1990.

  3. Tseluikin, V.N., Nanotechnol. Russ., 2014, vol. 9, nos. 1–2, pp. 1–14.

    Article  CAS  Google Scholar 

  4. Tseluikin, V.N., Prot. Met. Phys. Chem. Surf., 2016, vol. 52, no. 2, pp. 254–266; Tseluikin, V.N., Koreshkova, A.A., Prot. Met. Phys. Chem. Surf., 2018, vol. 54, no. 3, pp. 453–456; Tseluikin, V.N., Koreshkova, A.A., Prot. Met. Phys. Chem. Surf., 2018, vol. 54, no. 6, pp. 1047–1049.

    Article  CAS  Google Scholar 

  5. Gül, H., Kılıç, F., Uysal, M., et al., Appl. Surf. Sci., 2012, vol. 258, no. 10, pp. 4260–4267.

    Article  Google Scholar 

  6. Gupta, R.N., Das, A.K., and Nagahanumiah, Henal Shah, Mater. Manuf. Processes, 2016, vol. 31, no. 1, pp. 42–47.

    Article  CAS  Google Scholar 

  7. Mosallanejad, M.H., Shafyei, A., and Akhavan, S., Can. Metall. Q., 2016, vol. 55, no. 2, pp. 147–155.

    Article  CAS  Google Scholar 

  8. Gobinda Gyawali, Bhupendra Joshi, Khagendra Tripathi, and Soo Wohn Lee, J. Mater. Eng. Perform., 2017, vol. 26, no. 9, pp. 4462–4469.

    Article  CAS  Google Scholar 

  9. Alok Kumar Chaudhari, Dhananjay Kumar Singh, and Singh, V.B., Mater. Res. Express, 2018, vol. 5, no. 5, p. 056507.

  10. Burkat, G.K. and Dolmatov, V.Yu., Phys. Solid State, 2004, vol. 46, no. 4, pp. 703–710.

    Article  CAS  Google Scholar 

  11. Chayeuski, V.V., Zhylinski, V.V., Rudak, P.V., et al., Appl. Surf. Sci., 2018, vol. 446, pp. 18–26.

    Article  CAS  Google Scholar 

  12. Tseluikin, V.N., Prot. Met. Phys. Chem. Surf., 2017, vol. 53, no. 3, pp. 433–436.

    Article  CAS  Google Scholar 

  13. Giannopoulos, F., Chronopoulou, N., Bai, J., et al., Electrochim. Acta, 2016, vol. 207, pp. 76–86.

    Article  CAS  Google Scholar 

  14. Gizem Hatipoglu, Muhammet Kartal, Mehmet Uysal, et al., Tribol. Int., 2016, vol. 98, pp. 59–73.

    Article  CAS  Google Scholar 

  15. Algul, H., Tokur, M., Ozcan, S., et al., Appl. Surf. Sci., 2015, vol. 359, pp. 340–348.

    Article  CAS  Google Scholar 

  16. Ghulam Yasin, Muhammad Abubaker Khan, Muhammad Arif, et al., J. Alloys Compd., 2018, vol. 755, pp. 79–88.

    Article  CAS  Google Scholar 

  17. Ubbelohde, A.R. and Lewis, F.A., Graphite and Its Crystal Compounds, London: Clarendon Press, 1960.

    Google Scholar 

  18. Fialkov, A.S., Uglerod, mezhsloevye soedineniya i kompozity na ego osnove (Carbon, Intralayer Bonds and Composites on its Base), Moscow: Aspekt-Press, 1997.

  19. Yakovlev, A.V., Finaenov, A.I., Zabud’kov, S.L., and Yakovleva, E.V., Russ. J. Appl. Chem., 2006, vol. 79, no. 11, pp. 1741–1751.

    Article  CAS  Google Scholar 

  20. Yakovlev, A.V., Yakovleva, E.V., Rakhmetulina, L.A., et al., Izv. Vyssh. Uchebn. Zaved.,Khim. Khim. Tekhnol., 2018, vol. 61, no. 7, pp. 121–128.

    Google Scholar 

  21. Pavlycheva, N.K., Peplov, A.A., and Demin, A.P., Opt. Zh., 2007, vol. 74, no. 3, pp. 29–32.

    Google Scholar 

  22. Saifullin, R.S. and Abdullin, I.A., Ross. Khim. Zh., 1999, vol. 63, nos. 3–4, pp. 63–67.

    Google Scholar 

  23. Kaesche, H., Die Korrosion der Metalle: Physikalisch-Chemische Prinzipien und Aktuelle Probleme, Berlin: Springer, 1966.

    Book  Google Scholar 

  24. Marshakov, I.K., Prot. Met., 2002, vol. 38, no. 2, pp. 118–124.

    Article  CAS  Google Scholar 

  25. Gal’vanicheskie pokrytiya v mashinostroenii. Spravochnik (Galvanic Coatings for Machinery Manufacture. Handbook), Shluger, M.A., Ed., Moscow: Mashinostroenie, 1985, vol. 1.

    Google Scholar 

Download references

Funding

The work was supported by the Russian Foundation for Basic Research, project no. 18-29-19048\18.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Tseluikin.

Additional information

Translated by G. Levit

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tseluikin, V.N., Yakovlev, A.V. On the Electrochemical Deposition and Properties of Nickel-Based Composite Coatings. Prot Met Phys Chem Surf 56, 374–378 (2020). https://doi.org/10.1134/S2070205120020288

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205120020288

Navigation