Skip to main content
Log in

Pulsed Magnetron Sputtering of Ceramic SHS Targets as a Promising Technique for Deposition of Multifunctional Coatings

  • NEW SUBSTANCES, MATERIALS, AND COATINGS
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

The processes of the pulsed magnetron sputtering (PMS) of multicomponent ceramic targets are studied upon deposition of functional coatings of various purposes. The regularities of changes in the structural characteristics, as well as mechanical and tribological properties, under increasing magnetron power frequency are studied. Summarizing the results obtained using the PMS technology upon the deposition of coatings using multicomponent SHS cathodes, the following conclusions can be drawn. a) The structure of coatings. Pulsed sputtering leads to the development of a denser and, at the same time, more defective structure with a high level of internal stresses and roughness. The effect of the pulsed mode on the grain size depends on the sputtering type and configuration of magnetic fields. For reaction sputtering, structural refinement is observed in some cases. The effect of increasing the thickness of reaction coatings due to the commencement of interaction between atoms sputtered from the target and nitrogen atoms at precipitation and minimization of target surface poisoning is found. b) Coating properties. The effect of a pulsed mode on the adhesion strength of coatings is reduced to its decrease. Dependences of hardness and other mechanical properties on the frequency of the pulse power have an extreme character with a maximum at 50 kHz. The use of low frequencies (50–150 kHz) leads to a decrease in the friction factor. At the transition to the pulsed mode, the friction factor stabilizes during the test and, in most cases, wear resistance increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.
Fig. 21.
Fig. 22.
Fig. 23.
Fig. 24.
Fig. 25.

Similar content being viewed by others

REFERENCES

  1. Kelly, P.J. and Arnell, R.D., Vacuum, 2000, vol. 56, pp. 159–172.

    Article  CAS  Google Scholar 

  2. McLeod, P.S. and Hartsough, L.D., J. Vac. Sci. Technol., 1977, vol. 14, pp. 263–265.

    Article  CAS  Google Scholar 

  3. Waits, R.K., J. Vac. Sci. Technol., 1978, vol. 15, pp. 179–187.

    Article  CAS  Google Scholar 

  4. Window, B. and Savvides, N., J. Vac. Sci. Technol., A, 1986, vol. 4, pp. 196–202.

    Article  CAS  Google Scholar 

  5. Sproul, W.D., Rudnick, P.J., Graham, M.E., and Rohde, S.L., Surf. Coat. Technol., 1990, vols. 43/44, pp. 270–278.

    Article  Google Scholar 

  6. Anders, A., Thin Solid Films, 2006, vol. 502, pp. 22–28.

    Article  CAS  Google Scholar 

  7. Safi, I., Surf. Coat. Technol., 2000, vol. 127, pp. 203–219.

    Article  CAS  Google Scholar 

  8. Carter, D., Walde, H., McDonough, G., and Roche, G., Proc. 45th Annual Technical Conference, Albuquerque, NM: Society of Vacuum Coaters, 2002, pp. 570–577.

  9. Kelly, P.J., Henderson, P.S., and Arnell, R.D., J. Vac. Sci. Technol., A, 2000, vol. 18, no. 6, pp. 2890–2896.

    Article  CAS  Google Scholar 

  10. Arnell, R.D., Kelly, P.J., and Bradley, J.W., Surf. Coat. Technol., 2004, vols. 188–189, pp. 158–163.

    Article  Google Scholar 

  11. Misina, M., Bradley, J.W., Bäcker, H., Aranda-Gonzalvo, Y., Karkari, S.K., and Forder, D., Vacuum, 2003, vol. 68, pp. 171–181.

    Article  Google Scholar 

  12. Bradley, J.W., Bäcker, H., Aranda-Gonzalvo, Y., Kelly, P.J., and Arnell, R.D., Plasma Sources Sci. Technol., 2002, vol. 11, pp. 165–174.

    Article  CAS  Google Scholar 

  13. Onifade, A.A. and Kelly, P.J., Thin Solid Films, 2006, vol. 494, pp. 8–12.

    Article  CAS  Google Scholar 

  14. Musil, J., Lestina, J., Vlcek, J., and Tolg, T., J. Vac. Sci. Technol., A, 2000, vol. 19, no. 2, pp. 420–424.

    Article  Google Scholar 

  15. Belkind, A., Freilich, A., and Scholl, R.J., J. Vac. Sci. Technol., A, 1999, vol. 17, no. 4, pp. 1934–1940.

    Article  CAS  Google Scholar 

  16. Lin, J., Moore, J.J., Mishra, B., Sproul, W.D., and Rees, J.A., Surf. Coat. Technol., 2007, vol. 201, pp. 4640–4652.

    Article  CAS  Google Scholar 

  17. Tung-Sheng Yeh, Jenn-Ming Wu, and Long-Jang Hu, Thin Solid Films, 2008, vol. 516, pp. 7294–7298.

    Article  CAS  Google Scholar 

  18. Benegra, M., Lamas, D.G., Fernández de Rapp, M.E., Mingolo, N., Kunrath, A.O., and Souza, R.M., Thin Solid Films, 2006, vol. 494, pp. 146–150.

    Article  CAS  Google Scholar 

  19. Kelly, P.J., Beevers, C.F., Henderson, P.S., Arnell, R.D., Bradley, J.W., and Bäcker, H., Surf. Coat. Technol., 2003, vols. 174–175, pp. 795–800.

    Article  Google Scholar 

  20. Henderson, P.S., Kelly, P.J., Arnell, R.D., Bäcker, H., and Bradley, J.W., Surf. Coat. Technol., 2003, vols. 174–175, pp. 779–783.

    Article  Google Scholar 

  21. Treichel, O. and Kirchhoff, V., Surf. Coat. Technol., 2000, vol. 123, nos. 2–3, pp. 268–272.

    Article  CAS  Google Scholar 

  22. Bartzsch, H., Frach, P., Goedicke, K., and Gottfried, Chr., Proc. 45th Annual Technical Conference, Albuquerque, NM: Society of Vacuum Coaters, 2002, pp. 148–152.

  23. Barshilia, H.C. and Rajam, K.S., Surf. Coat. Technol., 2006, vol. 201, pp. 1827–1835.

    Article  CAS  Google Scholar 

  24. Jyh-Wei Lee, Shih-Kang Tien, and Yu-Chu Kuo, Thin Solid Films, 2006, vol. 494, pp. 161–167.

    Article  CAS  Google Scholar 

  25. Lin, J., Wu, Z.L., Zhang, X.H., Mishra, B., Moore, J.J., and Sproul, W.D., Thin Solid Films, 2009, vol. 517, pp. 1887–1894.

    Article  CAS  Google Scholar 

  26. Åstrand, M., Selinder, T.I., and Sjöstrand, M.E., Surf. Coat. Technol., 2005, vol. 2, pp. 625–629.

    Article  Google Scholar 

  27. Barshilia, H.C., Yogesh, K., and Rajam, K.S., Vacuum, 2009, vol. 83, pp. 427–434.

    Article  Google Scholar 

  28. Cremer, R., Reichert, K., and Neuschütz, D., Surf. Coat. Technol., 2001, vols. 142–144, pp. 642–648.

    Article  Google Scholar 

  29. Moser, M., Mayrhofer, P.H., Székely, L., Sáfrán, G., and Barna, P.B., Surf. Coat. Technol., 2008, vol. 203, pp. 148–155.

    Article  CAS  Google Scholar 

  30. Sunal, P., Messier, R., and Horn, M.W., Thin Solid Films, 2006, vol. 515, pp. 2185–2191.

    Article  CAS  Google Scholar 

  31. Audronis, M., Kelly, P.J., Arnell, R.D., and Valiulis, A.V., Surf. Coat. Technol., 2006, vol. 200, pp. 4166–4173.

    Article  CAS  Google Scholar 

  32. Audronis, M., Kelly, P.J., Leyland, A., and Matthews, A., Thin Solid Films, 2006, vol. 515, pp. 1511–1516.

    Article  CAS  Google Scholar 

  33. Audronis, M., Rosli, Z.M., Leyland, A., Kelly, P.J., and Matthews, A., Surf. Coat. Technol., 2008, vol. 202, pp. 1470–1478.

    Article  CAS  Google Scholar 

  34. Audronis, M., Leyland, A., Matthews, A., Kiryukhantsev-Korneev, F.V., Shtansky, D.V., and Levashov, E.A., Plasma Processes Polym., 2007, vol. 4, pp. 687–692.

    Article  Google Scholar 

  35. Kiryukhantsev-Korneev, Ph.V., Pierson, J.F., Bauer, J.Ph., Levashov, E.A., and Shtansky, D.V., Glass Phys. Chem., 2011, vol. 37, no. 4, pp. 411–417.

    Article  CAS  Google Scholar 

  36. Kiryukhantsev-Korneev, Ph.V., Pierson, J.F., Kuptsov, K.A., and Shtansky, D.V., Appl. Surf. Sci., 2014, vol. 314, pp. 104–111.

    Article  CAS  Google Scholar 

  37. Kiryukhantsev-Korneev, F.V., Shirmanov, N.A., Sheveiko, A.N., Levashov, E.A., Petrzhik, M.I., and Shtanskii, D.V., Russ. Eng. Res., 2010, vol. 30, no. 9, pp. 910–920.

    Article  Google Scholar 

  38. Kiryukhantsev-Korneev, F.V., Novikov, A.V., Sagalova, T.B., Petrzhik, M.I., Levashov, E.A., and Shtansky, D.V., Phys. Met. Metallogr., 2017, vol. 118, no. 11, pp. 1136–1146.

    Article  CAS  Google Scholar 

  39. Kiryukhantsev-Korneev, F.V., Kuptsov, K.A., Sheveiko, A.N., Levashov, E.A., and Shtansky, D.V., Russ. J. Non-Ferrous Met., 2013, vol. 54, no. 4, pp. 330–335.

    Article  Google Scholar 

  40. Kuptsov, K.A., Kiryukhantsev-Korneev, Ph.V., Sheveyko, A.N., and Shtansky, D.V., Surf. Coat. Technol., 2013, vol. 216, pp. 273–281.

    Article  CAS  Google Scholar 

  41. Shtansky, D.V., Batenina, I.V., Yadroitsev, I.A., Ryashin, N.S., Kiryukhantsev-Korneev, Ph.V., Kudryashov, A.E., Sheveyko, A.N., Zhitnyak, I.Y., Gloushankova, N.A., Smurov, I.Y., and Levashov, E.A., Surf. Coat. Technol., 2012, vol. 208, pp. 14–23.

    Article  CAS  Google Scholar 

  42. Kiryukhantsev-Korneev, F.V., Lemesheva, M.V., Shvyndina, N.V., Levashov, E.A., and Potanin, A.Yu., Prot. Met. Phys. Chem. Surf., 2018, vol. 54, no. 6, pp. 1147–1156.

    Article  CAS  Google Scholar 

  43. Iatsyuk, I.V., Lemesheva, M.V., Kiryukhantsev-Korneev, Ph.V., and Levashov, E.A., IOP Conf. Ser.: Mater. Sci. Eng., 2018, vol. 347, pp. 012–028.

  44. Kiryukhantsev-Korneev, F.V., and Levashov, E.A., Pis’ma Zh. Eksp. Teor. Fiz., 2020, vol. 46, no. 4, pp. 30–32.

Download references

Funding

The studies of structure and properties of ZrBN coatings were supported by the Russian Foundation for Basic Research, project no. 19-08-00187.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ph. V. Kiryukhantsev-Korneev.

Additional information

Translated by N. Saetova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiryukhantsev-Korneev, P.V. Pulsed Magnetron Sputtering of Ceramic SHS Targets as a Promising Technique for Deposition of Multifunctional Coatings. Prot Met Phys Chem Surf 56, 343–357 (2020). https://doi.org/10.1134/S2070205120020124

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205120020124

Navigation