Skip to main content
Log in

Understanding the Corrosion Inhibition Mechanism of Mild Steel in Hydrochloric Acid by a Triazole Derivative: A Combined Experimental and Theoretical Approach

  • PHYSICOCHEMICAL PROBLEMS OF MATERIALS PROTECTION
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

The effect of an heterocycle triazole, namely (1-(4-methoxyphenyl)-1H-1,2,3-triazol-4-yl)methanol (MTM) on the corrosion of mild steel in hydrochloric acid solution has been investigated using electrochemical methods for a wide temperature range, FT-IR spectroscopy and SEM techniques. MTM was found to inhibit the corrosion of steel by adsorbing to a great extent, even at high temperatures. Computational results point to the phenyl ring as the main structural part which is responsible of the adsorption by electron-accepting to the mild steel surface, while the triazol ring is responsible for the electron-donating. Molecular dynamics simulations (MD), reduced density gradient (RDG), radial distribution function (RDF) provides further insights into the interpretation of inhibition mechanism in a more realistic condition, confirming that the MTM can effectively protect mild steel against corrosion by constraining the diffusion of the particles present on the steel surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig.10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.

Similar content being viewed by others

REFERENCES

  1. Umoren, S.A. and Obot, I.B., Surf. Rev. Lett., 2008, vol. 15, p. 277.

    Article  CAS  Google Scholar 

  2. Benabdellah, M., Yahyi, A., Dafali, A., Aouniti, A., Hammouti, B., and Ettouhami, A., Arabian J. Chem., 2011, vol. 4, p. 243.

    Article  CAS  Google Scholar 

  3. Negm, N.A., Migahed, M.A., Farag, R.K., Fadda, A.A., Awad, M.K., and Shaban, M.M., J. Mol. Liq., 2018, vol. 262, p. 363.

    Article  CAS  Google Scholar 

  4. Quraishi, M.A. and Sharma, H.K., Mater. Chem. Phys., 2003, vol. 78, p. 18.

    Article  Google Scholar 

  5. Tamilselvi, S. and Rajeswari, S., Methods Mater., 2003, vol. 50, p. 223.

    CAS  Google Scholar 

  6. Wang, L., Corros. Sci., 2006, vol. 48, p. 608.

    Article  CAS  Google Scholar 

  7. Sanaei, Z., Bahlakeh, G., and Ramezanzadeh, B., J. Alloys Compd., 2017, vol. 728, p. 1289.

    Article  CAS  Google Scholar 

  8. Nahlé, A.H., Harvey, T.J., and Walsh, F.C., J. Alloys Compd., 2018, vol. 765, p. 812.

    Article  Google Scholar 

  9. Cruz, J., Pandiyan, T., and Garcia-Ochoa, E., J. Electroanal. Chem., 2005, vol. 583, p. 816.

    Article  Google Scholar 

  10. Bashir, S., Sharma, V., Lgaz, H., Chung, I.M., Singh, A., and Kumar, A., J. Mol. Liq., 2018, vol. 263, p. 454.

    Article  CAS  Google Scholar 

  11. Krishnaveni, K., Sampath, K., Ravichandran, J., and Chin, C., J. Chem. Eng., 2015, vol. 23, p. 1916.

    CAS  Google Scholar 

  12. Idouhli, R., Oukhrib, A., Koumya, Y., Abouelfida, A., Benyaich, A., and Benharref, A., Corros. Rev., 2018, vol. 36, p. 373.

    Article  CAS  Google Scholar 

  13. Laamari, M.R., Benzakour, J., Berrekhis, F., Abouelfida, A., Derja, A., and Villemin, D., Arabian J. Chem., 2011, vol. 4, p. 271.

    Article  CAS  Google Scholar 

  14. Eldesoky, A.M. and Nozha, S.G., J. Chem. Eng., 2017, vol. 25, p. 1256.

    CAS  Google Scholar 

  15. Materials Studio, Revision 6.0, San Diego, CA: Accelrys, 2013.

  16. Sun, H., J. Phys. Chem. B, 1998, vol. 102, p. 7338.

    Article  CAS  Google Scholar 

  17. Hosseini, S.M.A. and Azimi, A., Corros. Sci., 2009, vol. 51, p. 728.

    Article  CAS  Google Scholar 

  18. Lorenz, W.J. and Mansfeld, F., Corros. Sci, 1981, vol. 21, pp. 647–672.

    Article  CAS  Google Scholar 

  19. Yadav, M., Behera, D., Kumar, S., and Sinha, R.R., Ind. Eng. Chem. Res., 2013, vol. 52, p. 6318.

    Article  CAS  Google Scholar 

  20. Pournazari, S., Moayed, M.H., and Rahimizadeh, M., Corros. Sci., 2013, vol. 71, p. 20.

    Article  CAS  Google Scholar 

  21. Ita, B.I. and Offiong, O.E., Mater. Chem. Phys., 2001, vol. 70, p. 330.

    Article  CAS  Google Scholar 

  22. El Mehdi, B., Mernari, B., Traisnel, M., Bentiss, F., and Lagrenee, M., Mater. Chem. Phys., 2003, vol. 77, p. 489.

    Article  CAS  Google Scholar 

  23. Ghailane, T., Balkhmima, R.A., Ghailane, R., Souizi, A., Touir, R., EbnTouhami, M., Marakchi, K., and Komiha, N., Corros. Sci., 2013, vol. 76, p. 317.

    Article  CAS  Google Scholar 

  24. Bagherzadeh, M. and Jaberinia, F., J. Alloys Compd., 2018, vol. 750, p. 677.

    Article  CAS  Google Scholar 

  25. Solmaz, R., Kardaş, G., Çulha, M., Yazıcı, B., and Erbil, M., Electrochim. Acta., 2008, vol. 53, p. 5941.

    Article  CAS  Google Scholar 

  26. Ma, Q., Qi, S., He, X., Tang, Y., and Lu, G., Corros. Sci., 2017, vol. 129, p. 91.

    Article  CAS  Google Scholar 

  27. Chaouiki, A., Lgaz, H., Chung, I.M., Ali, I.H., Gaonkar, S.L., Bhat, K.S., Salghi, R., Oudda, H., and Khan, M.I., J. Mol Liq., 2018, vol. 266, p. 603.

    Article  CAS  Google Scholar 

  28. Ouici, H.B., Benali, O., Harek, Y., Larabi, L., and Hammouti, B., Res. Chem. Intermed., 2013, vol. 39, p. 2777.

    Article  CAS  Google Scholar 

  29. Yan, Y., Wang, X., Zhang, Y., Wang, P., Cao, X., and Zhang, J., Corros. Sci., 2013, vol. 73, p. 123.

    Article  CAS  Google Scholar 

  30. Kumar, R., Chahal, S., Kumar, S., Lata, S., Lgaz, H., Salghi, R., and Jodeh, S., J. Mol. Liq., 2017, vol. 243, p. 439.

    Article  CAS  Google Scholar 

  31. Contreras-García, J., Boto, R.A., Izquierdo-Ruiz, F., Reva, I., Woller, T., and Alonso, M., Theor. Chem. Acc., 2016, vol. 135, p. 242.

    Article  Google Scholar 

  32. Roohi, H., Ghauri, K., and Salehi, R., J. Mol. Liq., 2017, vol. 243, p. 22.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to the Center of Analyses and Characterization (CAC) of University Caddy Ayyad, Morocco.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to My Rachid Laamari.

Ethics declarations

Authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aziz Boutouil, Hrimla, M., Laamari, M.R. et al. Understanding the Corrosion Inhibition Mechanism of Mild Steel in Hydrochloric Acid by a Triazole Derivative: A Combined Experimental and Theoretical Approach. Prot Met Phys Chem Surf 55, 973–985 (2019). https://doi.org/10.1134/S2070205119050046

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205119050046

Keywords:

Navigation