Skip to main content
Log in

Quasi-Newton Single-Phase Stability Testing without Explicit Hessian Calculation

  • Published:
Mathematical Models and Computer Simulations Aims and scope

Abstract

A robust algorithm (solver) for testing the single-phase stability of a multicomponent fluid under isochoric-isobaric conditions is developed. The approach is based on the quasi-Newton minimization of Helmholtz free energy. The solver does not need explicit Hessian calculation when used with properly scaled variables. The solver is not tied to a specific equation of state and is applicable when the derivatives are calculated using automatic differentiation. The generation of initial estimates only needs an auxiliary cubic equation of state. We analyze the robustness and performance of the solver and present calculations of the phase boundary for a number of mixtures using the cubic equation of state and the equation of state from the family of the statistical association fluid theory (SAFT).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Z. Chen, G. Huan, and Y. Ma, Computational Methods for Multiphase Flows in Porous Media (Soc. Ind. Appl. Math., Philadelphia, 2006).

    Book  MATH  Google Scholar 

  2. O. Polívka and J. Mikyška, “Compositional modeling of two-phase flow in porous media using semi-implicit scheme,” IAENG Int. J. Appl. Math. 45, 218–226 (2015).

    MathSciNet  MATH  Google Scholar 

  3. E. V. Usov, V. N. Ulyanov et al., “Modelling multiphase flows of hydrocarbons in gas-condensate and oil wells,” Math. Models. Comput. Simul. 12, 1005–1013 (2020). https://doi.org/10.1134/S2070048220060162

    Article  MathSciNet  Google Scholar 

  4. M. J. Assael, J. H. Dymond, M. Papadaki et al., “Correlation and prediction of dense fluid transport coefficients. III. n-alkane mixtures,” Int. J. Thermophys. 13, 659–669 (1992). https://doi.org/10.1007/BF00501947

    Article  Google Scholar 

  5. F. Ciotta, J. P. M. Trusler, and V. Vesovic, “Extended hard-sphere model for the viscosity of dense fluids,” Fluid Phase Equilib. 363, 239–247 (2014). https://doi.org/10.1016/j.fluid.2013.11.032

    Article  Google Scholar 

  6. A. Gerasimov, I. Alexandrov, and B. Grigoriev, “Modeling and calculation of thermodynamic properties and phase equilibria of oil and gas condensate fractions based on two generalized multiparameter equations of state,” Fluid Phase Equilib. 418, 204–223 (2016). https://doi.org/10.1016/j.fluid.2016.01.016

    Article  Google Scholar 

  7. B. Grigoriev, I. Alexandrov, and A. Gerasimov, “Application of multiparameter fundamental equations of state to predict the thermodynamic properties and phase equilibria of technological oil fractions,” Fuel 215, 80–89 (2018). https://doi.org/10.1016/j.fuel.2017.11.022

    Article  Google Scholar 

  8. O. Yu. Batalin, A. I. Brusilovski, and M. Yu. Zakharov, Phase Equilibria in Natural Hydrocarbons Systems (Nedra, Moscow, 1992) [in Russian].

    Google Scholar 

  9. T. Jindrová and J. Mikyška, “Fast and robust algorithm for calculation of two-phase equilibria at given volume, temperature, and moles,” Fluid Phase Equilib. 353, 101–114 (2013). https://doi.org/10.1016/j.fluid.2013.05.036

    Article  MATH  Google Scholar 

  10. J. Mikyška and A. Firoozabadi, “Investigation of mixture stability at given volume, temperature, and number of moles,” Fluid Phase Equilib. 321, 1–9 (2012). https://doi.org/10.1016/j.fluid.2012.01.026

    Article  Google Scholar 

  11. J. Mikyška and A. Firoozabadi, “A new thermodynamic function for phase-splitting at constant temperature, moles, and volume,” AIChE J. 57, 1897–1904 (2011). https://doi.org/10.1002/aic.12387

    Article  Google Scholar 

  12. M. Cismondi, P. M. Ndiaye, and F. W. Tavares, “A new simple and efficient flash algorithm for T-v specifications,” Fluid Phase Equilib. 464, 32–39 (2018). https://doi.org/10.1016/j.fluid.2018.02.019

    Article  Google Scholar 

  13. D. V. Nichita and M. Petitfrere, “Phase equilibrium calculations with quasi-Newton methods,” Fluid Phase Equilib. 406, 194–208 (2015). https://doi.org/10.1016/j.fluid.2015.07.035

    Article  Google Scholar 

  14. D. V. Nichita, “Fast and robust phase stability testing at isothermal-isochoric conditions,” Fluid Phase Equilib. 447, 107–124 (2017). https://doi.org/10.1016/j.fluid.2017.05.022

    Article  Google Scholar 

  15. M. Petitfrere and D. V. Nichita, “On a choice of independent variables in Newton iterations for multiphase flash calculations,” Fluid Phase Equilib. 427, 147–151 (2016). https://doi.org/10.1016/j.fluid.2016.06.050

    Article  Google Scholar 

  16. M. Petitfrere and D. V. Nichita, “A comparison of conventional and reduction approaches for phase equilibrium calculations,” Fluid Phase Equilib. 386, 30–46 (2015). https://doi.org/10.1016/j.fluid.2014.11.017

    Article  Google Scholar 

  17. M. Fathi and S. Hickel, “Rapid multi-component phase-split calculations using volume functions and reduction methods,” AIChE J. 67, e17174 (2021). https://doi.org/10.1002/aic.17174

    Article  Google Scholar 

  18. M. Benedict, G. B. Webb, and L. C. Rubin, “An empirical equation for thermodynamic properties of light hydrocarbons and their mixtures I. Methane, ethane, propane and n-butane,” J. Chem. Phys. 8, 334–345 (1940). https://doi.org/10.1063/1.1750658

    Article  Google Scholar 

  19. O. Kunz and W. Wagner, “The GERG-2008 wide-range equation of state for natural gases and other mixtures: An expansion of GERG-2004,” J. Chem. Eng. Data 57, 3032–3091 (2012). https://doi.org/10.1021/je300655b

    Article  Google Scholar 

  20. I. Alexandrov, A. Gerasimov, and B. Grigor’ev, “Generalized fundamental equation of state for the normal alkanes (C5–C50),” Int. J. Thermophys. 34, 1865–1905 (2013). https://doi.org/10.1007/s10765-013-1512-1

    Article  Google Scholar 

  21. J. Gross and G. Sadowski, “Perturbed-chain SAFT: An equation of state based on a perturbation theory for chain molecules,” Ind. Eng. Chem. Res. 40, 1244–1260 (2001). https://doi.org/10.1021/ie0003887

    Article  Google Scholar 

  22. J. Nocedal and S. J. Wright, Numerical Optimization, 2nd ed. (Springer, New York, 2006). https://doi.org/10.1007/978-0-387-40065-5

  23. A. I. Brusilovsky, “Mathematical simulation of phase behavior of natural multicomponent systems at high pressures with an equation of state,” SPE Reservoir Eng. 7, 117–122 (1992). https://doi.org/10.2118/20180-PA

    Article  Google Scholar 

  24. I. Polishuk, “Standardized critical point-based numerical solution of statistical association fluid theory parameters: The perturbed chain-statistical association fluid theory equation of state revisited,” Ind. Eng. Chem. Res. 53, 14127–14141 (2014). https://doi.org/10.1021/ie502633e

    Article  Google Scholar 

  25. W. W. Hager and H. Zhang, “A new conjugate gradient method with guaranteed descent and an efficient line search,” SIAM J. Optim. 16, 170–192 (2005). https://doi.org/10.1137/030601880

    Article  MathSciNet  MATH  Google Scholar 

  26. J. F. Blinn, “How to solve a cubic equation, Part 5: Back to numerics,” IEEE Comput. Graphics Appl. 27 (3), 78–89 (2007). https://doi.org/10.1109/MCG.2007.60

    Article  Google Scholar 

  27. V. Pisarev and S. Zakharov, CubicEoS.jl. https://github.com/vvpisarev/CubicEoS.jl.

  28. V. Pisarev and S. Zakharov, Downhill.jl. https://github.com/vvpisarev/Downhill.jl.

  29. V. Pisarev and S. Zakharov, CP_PC_SAFT.jl. https://github.com/vvpisarev/CP_PC_ SAFT.jl.

  30. J. Bezanson, A. Edelman, et al., “Julia: A fresh approach to numerical computing,” SIAM Rev. 59, 65–98 (2017). https://doi.org/10.1137/141000671

    Article  MathSciNet  MATH  Google Scholar 

  31. P. Linstrom and W. G. Mallard, NIST Chemistry WebBook, NIST Standard Reference Database Number 69 (National Institute of Standards and Technology, Gaithersburg, MD, 1997).

    Google Scholar 

  32. A. Chiko, I. Polishuk, et al., “Comparison of CP-PC-SAFT and SAFT-VR-Mie in predicting phase equilibria of binary systems comprising gases and 1-Alkyl-3-methylimidazolium ionic liquids,” Molecules 26, 6621 (2021). https://doi.org/10.3390/molecules26216621

    Article  Google Scholar 

  33. V. P. Voronov, M. Yu. Belyakov, et al., “Phase behavior of methane-pentane mixture in bulk and in porous media,” Transp. Porous Media 52, 123–140 (2003). https://doi.org/10.1023/A:1023572003514

    Article  Google Scholar 

Download references

Funding

The solvers were developed with the support of the Russian Science Foundation (project 17-79-20391).

The performance analysis was supported by the Ministry of Science and Higher Education of the Russian Federation (State Assignment No. 075-01056-22-00).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. A. Zakharov or V. V. Pisarev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zakharov, S.A., Pisarev, V.V. Quasi-Newton Single-Phase Stability Testing without Explicit Hessian Calculation. Math Models Comput Simul 15, 894–904 (2023). https://doi.org/10.1134/S2070048223050137

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070048223050137

Keywords:

Navigation