Skip to main content
Log in

Kinetic model of radiation-induced gas conductivity

  • Published:
Mathematical Models and Computer Simulations Aims and scope

Abstract

A kinetic equation for low-energy electrons induced in gas by ionizing radiation is studied. The kinetic equation takes into account elastic, inelastic, and ionization collisions between electrons and gas molecules, as well as the interaction with an external electric field. The process of the conduction current generation is considered. A small parameter is calculated as a ratio of the energy accumulated by an electron between collisions to the thermal energy. An approximate solution is constructed of the kinetic equation for electron concentration and flow. The study resulted in obtaining quadrature formulas for the calculation of electron conduction of an ionized gas in the model of a radiation-induced electromagnetic field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. K. Fedorov, N. P. Sergeev, and A. A. Kondrashin, Control and Tests in the Design and Production of Electronic Equipment (Tekhnosfera, Moscow, 2005) [in Russian].

    Google Scholar 

  2. A. I. Chumakov, Impact of Spece Radiation on Integrated Circuits (Radio i Svyaz’, Moscow, 2004) [in Russian].

    Google Scholar 

  3. M. E. Zhukovskii and M. B. Markov, Mathematical Modeling of Radiation-Induced Electromagnetic Fields, in Encyclopedia of Low-Temperature Plasma, Series B, Vol. VII-I, Part 2 (FIZMATLIT, Moscow, 2005) [in Russian].

    Google Scholar 

  4. M. B. Markov and M. E. Zhukovskii, “Modeling the Radiative Electromagnetic Field,” International Journal of Computing Science and Mathematics 2(1/2), 110–131 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  5. A. N. Andrianov, A. V. Berezin, A. S. Vorontsov, et al., “Modeling of Electromagnetic Fields on Multiprocessor Computing Systems,” Mat. Model. 20(3) (2008).

  6. M. B. Markov, S. V. Parot’kin, and A. V. Sysenko, “Particle Method for a Model of an Electromagnetic Field of an Electron Flux in a Gas,” Mat. Model. 20(5) (2008).

  7. National Institute of Standards and Teshnology. http//www.phys.nist.gov/.

  8. C. L. Longmire, Elementary Plasma Physics, (Interscience Publishers, New York, 1963, Atomizdat, Moscow, 1966).

    MATH  Google Scholar 

  9. L. G. H. Huxley and R. W. Crompton, The Diffusion and Drift of Electrons in Gases (Wiley, New York, 1974, Mir, Moscow, 1977).

    Google Scholar 

  10. Y. Itikawa, “Cross Sections for Collisions of Electrons and Photons with Nitrogen Molecules,” J. Phys. Chem. Ref. Data 15(3), 985 (1986).

    Article  Google Scholar 

  11. Y. Itikawa, “Cross Sections for Collisions of Electrons and Photons with Oxygen Molecules,” J. Phys. Chem. Ref. Data 18(1), 23 (1989).

    Article  Google Scholar 

  12. S. Trajmar, “Electron Scattering by Molecules II. Experimental Methods and Data,” Phys. Rep. 97, 219 (1983).

    Article  Google Scholar 

  13. G. J. Schulz, “Vibrational Excitation of N2CO, and H2 by Electron Impact,” Phys. Rev. A: 135(4), 988 (1964).

    MathSciNet  Google Scholar 

  14. G. J. Schulz, “Vibrational Excitation of CO2 by Electron Impact,” Phys. Rev. Lett. 21, 1031 (1968).

    Article  Google Scholar 

  15. G. J. Schulz, “Resonances in Electron Impact on Atoms,” Rev. Mod. Phys. 45(3), 378 (1973).

    Article  MathSciNet  Google Scholar 

  16. D. J. Spence, “Measurement of Total Inelastic Cross Sections for Electron Impact in N2 and CO2,” Chem. Phys. 57, 5516 (1972).

    Google Scholar 

  17. L. M. Biberman, V. S. Vorob’ev, and I. T. Yakubov, Kinetics of Non-Equilibrium Low-temperature Plasma (Nauka, Moscow, 1982) [in Russian].

    Google Scholar 

  18. D. C. Cartwright, “Electron Impact Excitation of the Electronic States of N2. II. Integral Cross Sections at Incident Energies from 10 to 50 eV,” Phys. Rev. A: 16, 1041 (1977).

    Article  Google Scholar 

  19. A. Chutjian, “Electron Impact Excitation of He Electronic States of N2. III. Transitions in the 12.5–14.2-eV Energy-Loss Region at Incident Energies of 40 and 60 eV,” Phys. Rev. A: 16, 1052 (1977).

    Article  Google Scholar 

  20. I. V. Kochetov, et al., “Velocities of Processes Induced by an Electron Impact in Nonequilibrium Plasma. Molecular Nitrogen and Carbon Dioxide,” in Plasmochemical Processes (Nauka, Moscow, 1979) [in Russian].

    Google Scholar 

  21. D. Rapp, “Cross Sections for Dissociative Ionization of Molecules by Electron Impact,” The Journal of Chemical Physics 42(12), 4081.

  22. Yong-Ki. Kim, “Binary-Encounter-Dipole Model for Electron-Impact Ionization,” Phys. Rev. A: 50(5), 3954 (1994).

    Article  Google Scholar 

  23. Yong-Ki. Kim, “Extension of the Binary-Encounter-Dipole Model To Relativistic Incident Electrons,” Phys. Rev. A: 62(5), 052710 (2000).

    Article  Google Scholar 

  24. V. L. Ginzburg and A. V. Gurevich, “Nonlinear Phenomena in Plasma Located in an Alternating Electromagnetic Fiels,” UFN, Vol. LXX (1960).

  25. R. Kubo, Statistical Mechanics: an Advanced Course with Problems and Solutions (Mir, Moscow, 1967; North-Holland, Amsterdam, 1965).

    Google Scholar 

  26. H. S. W. Massey and E. H. S. Burhop, Electronic and Ionic Impact Phenomena (Oxford University Press, New York, 1969, Izd. Inostr. Lit., Moscow, 1958) [in Russian].

    Google Scholar 

  27. N. L. Aleksandrov and E. E. Son, “Energy Distribution and Kinetic Coefficients of Electrons in Gases in an Electric Field,” in Plasma Chemistry No. 5 (Atomizdat, Moscow, 1978) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. B. Markov.

Additional information

Original Russian Text © M.B. Markov, S.V. Parot’kin, 2011, published in Matematicheskoe Modelirovanie, 2011, Vol. 23, No. 4, pp. 41–56.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Markov, M.B., Parot’kin, S.V. Kinetic model of radiation-induced gas conductivity. Math Models Comput Simul 3, 712–722 (2011). https://doi.org/10.1134/S207004821106007X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S207004821106007X

Keywords

Navigation