Skip to main content
Log in

Alkali-Resistant Filamentous Fungi of the Coastal Zone of the Dauria Saline Lakes

  • Published:
Contemporary Problems of Ecology Aims and scope

Abstract

The study of alkali-resistant fungi has been carried out for the first time on the coast of saline lakes in the south of the Trans-Baikal region on the territory of the Daursky Biosphere Reserve (lakes Zun-Torey and Khangei). The changes in the structure of the community of alkali-resistant ascomycetes depend on local conditions. The coast of Khangei is devoid of halophites, but has a high content of Artemia eggs and is characterized by the absolute dominance of the alkaliphilic ascomycete Sodiomyces alkalinus (100% occurrence) and Emericellopsis alkalina (80%), with a minimum diversity of other fungi. S. alkalinus predominates (100%) on the coast of Lake Zun-Torey in damp places without plants. Dark-colored fungi from Dothideomycetes (Alternaria, Neocamarosporium, etc.) predominate in the alkaline soil samples of this lake not far from the halophites; the occurrence of E. alkalina is 60% and S. alkalinus is not found here, but high occurrence is shown for the other species of Plectosphaerellaceae (Chordomyces and Gibellulopsis). The distribution, substrate preferences, and functional roles of alkaliphilic and alkalitolerant fungi in extreme natural habitats with soda salinity are discussed in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Afonina, E.Yu. and Tashlykova, N.A., Plankton of saline lakes in Southeastern Transbaikalia: transformation and environmental factors, Contemp. Probl. Ecol., 2019, vol. 12, no. 2, pp. 155–170. https://doi.org/10.1134/S1995425519020021

    Article  Google Scholar 

  2. Afonina, E.Y. and Tashlykova, N.A., Fluctuations in plankton community structure of endorheic soda lakes of southeastern Transbaikalia (Russia), Hydrobiologia, 2020, vol. 847, pp. 1383–1439. https://doi.org/10.1007/s10750-020-04207-z

    Article  CAS  Google Scholar 

  3. Alisaac, E. and Götz, M., First report of Gibellulopsis nigrescens on peppermint in Germany, J. Plant Dis. Prot., 2022, vol. 129, pp. 207–209. https://doi.org/10.1007/s41348-021-00540-0

    Article  CAS  Google Scholar 

  4. Azpiazu-Muniozguren, M., Perez, A., Rementeria, A., Martinez-Malaxetxebarria, I., Alonso, R., Laorden, L., Gamboa, J., Bikandi, J., Garaizar, J., and Martinez-Ballesteros, I., Fungal diversity and composition of the continental solar saltern in Añana Salt Valley (Spain), J. Fungi, 2021, vol. 7, p. 1074. https://doi.org/10.3390/jof7121074

    Article  CAS  Google Scholar 

  5. Bazhenova, O.I., Modern dynamics of lake-fluvial systems of Onon-Torey high plain (Southern Transbaikalia), Vestn. Tomsk. Gos. Univ., 2013, no. 371, pp. 171–177.

  6. Bilanenko, E.N. and Georgieva, M.L., Micromycetes of South Siberian solonchak (Kulunda Steppe), Mikol. Fitopatol., 2005, vol. 39, no. 4, pp. 6–13.

    Google Scholar 

  7. Bilanenko, E., Sorokin, D., Ivanova, M., and Kozlova, M., Heleococcum alkalinum, a new alkalitolerant ascomycete from saline soda soils, Mycotaxon, 2005, vol. 91, pp. 497–507.

    Google Scholar 

  8. Bondarenko, S.A., Georgieva, M.L., and Bilanenko, E.N., Alkalitolerant micromycetes in acidic and neutral soils of the temperate zone, Microbiology, 2016, vol. 85, no. 6, pp. 754–761.

    Article  Google Scholar 

  9. Bondarenko, S.A., Georgieva, M.L., and Bilanenko, E.N., Fungi inhabiting the coastal zone of Lake Magadi, Contemp. Probl. Ecol., 2018a, vol. 11, no. 5, pp. 439–448. https://doi.org/10.1134/S1995425518050049

    Article  Google Scholar 

  10. Bondarenko, S.A., Yanutsevich, E.A., Sinitsyna, N.A., Georgieva, M.L., Bilanenko, E.N., and Tereshina, V.M., Dynamics of the cytosol soluble carbohydrates and membrane lipids in response to ambient pH in alkaliphilic and alkalitolerant fungi, Microbiology, 2018b, vol. 87, no. 1, pp. 21–32. https://doi.org/10.1134/S0026261718010034

    Article  CAS  Google Scholar 

  11. Bondarenko, S.A., Georgieva, M.L., Kokaeva, L.Y., and Bilanenko, E.N., First discovery of alkali-resistant fungi on the coast of chloride lake Baskunchak, Moscow Univ. Biol. Sci. Bull., 2019, vol. 74, no. 2, pp. 57–62. https://doi.org/10.3103/S0096392519020020

    Article  Google Scholar 

  12. Boros, E. and Kolpakova, M., A review of the defining chemical properties of soda lakes and pans: an assessment on a large geographic scale of Eurasian inland saline surface waters, PLoS One, 2018, vol. 13, no. 8, p. e0202205.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Cantrell, S.A, Tkavc, R., Gunde-Cimerman, N., Zalar, P., Acevedo, M., and Báez-Félix, C., Fungal communities of young and mature hypersaline microbial mats, Mycologia, 2013, vol. 105, no. 4, pp. 827–836. https://doi.org/10.3852/12-288

    Article  PubMed  Google Scholar 

  14. Carreira, C., Staal, M., Falkoski, D., Vries, R.P., Middelboe, M., and Brussaard, C.P., Disruption of photoautotrophic intertidal mats by filamentous fungi, Environ. Microbiol., 2015, vol. 17, no. 8, pp. 2910–2921.

    Article  PubMed  Google Scholar 

  15. Carreira, C., Lønborg, C., Kühl, M., Lillebø, A.I., Sandaa, R.A., Villanueva, L., and Cruz, S., Fungi and viruses as important players in microbial mats, FEMS Microbiol. Ecol., 2020, vol. 96, no. 11, p. fiaa187. https://doi.org/10.1093/femsec/fiaa187

  16. Dayarathne, M.C., Jones, E.B.G., Maharachchikumbura, S.S.N., Devadatha, B., Sarma, V.V., Khongphinitbunjong, K., Chomnunti, P., and Hyde, K.D., Morpho-molecular characterization of microfungi associated with marine based habitats, Mycosphere, 2020, vol. 11, no. 1, pp. 1–188. https://doi.org/10.5943/mycosphere/11/1/1

    Article  Google Scholar 

  17. Espinosa-Asuar, L., Monroy-Guzmán, C., Madrigal-Tr-ejo, D., Navarro-Miranda, M., Sánchez-Pérez, J., Buenrostro Muñoz, J., Villar, J., Cifuentes Camargo, J.F., Kalambokidis, M., Esquivel-Hernandez, D.A., Viladomat Jasso, M., Escalante, A.E., Velez, P., Figueroa, M., Martinez-Cardenas, A., Ramirez-Barahona, S., Gasca-Pineda, J., Eguiarte, L.E., and Souza, V., Diversity of an uncommon elastic hypersaline microbial mat along a small-scale transect, PeerJ, 2022, vol. 10, p. e13579. https://doi.org/10.7717/peerj.13579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Flemming, H.C. and Wuertz, S., Bacteria and archaea on Earth and their abundance in biofilms, Nat. Rev. Microbiol., 2019, vol. 17, pp. 247–260.

    Article  CAS  PubMed  Google Scholar 

  19. Furtado, B.U., Szymańska, S., and Hrynkiewicz, K., A window into fungal endophytism in Salicornia europaea: deciphering fungal characteristics as plant growth promoting agents, Plant Soil, 2019, vol. 445, pp. 577–594. https://doi.org/10.1007/s11104-019-04315-3

    Article  CAS  Google Scholar 

  20. Georgieva, M.L., Grum-Grzhimaylo, A.A., Yamnova, I.A., and Bilanenko, E.N., Filamentous fungi in soda-sulphate solonchaks of Gobi desert (Mongolia), Mikol. Fitopatol., 2012a, vol. 46, no. 1, pp. 27–32.

    Google Scholar 

  21. Georgieva, M.L., Lebedeva, M.P., and Bilanenko, E.N., Mycelial fungi in saline soils of the Western Transbaikal region, Eurasian Soil Sci., 2012b, vol. 45, no. 12, pp. 1159–1168.

    Article  Google Scholar 

  22. Gonçalves, M.F.M., Aleixo, A., Vicente, T.F.L., Esteves, A.C., and Alves, A., Three new species of Neocamarosporium isolated from saline environments: N. aestuarinum sp. nov., N. endophyticum sp. nov. and N. halimiones sp. nov., Mycosphere, 2019, vol. 10, no. 1, pp. 608–621. https://doi.org/10.5943/mycosphere/10/1/11

    Article  Google Scholar 

  23. Gonçalves, M.F.M., Vicente, T.F., Esteves, A.C., and Alves, A., Novel halotolerant species of Emericellopsis and Parasarocladium associated with macroalgae in an estuarine environment, Mycologia, 2020, vol. 112, pp. 154–171. https://doi.org/10.1080/00275514.2019.1677448

    Article  CAS  PubMed  Google Scholar 

  24. Grant, W.D. and Jones, B.E., Bacteria, archaea and viruses of soda lakes, in Soda Lakes of East Africa, Schagerl, M., Ed., Springer-Verlag, 2016, pp. 97–147.

    Google Scholar 

  25. Grant, W.D. and Sorokin, D.Y., Distribution and diversity of soda lake alkaliphiles, in Extremophiles. Handbook, Japan: Springer-Verlag, 2011, pp. 27–54.

    Google Scholar 

  26. Grum-Grzhimaylo, A.A., Debets, A.J.M., Diepeningen, A.D., Georgieva, M.L., and Bilanenko, E.N., Sodiomyces alkalinus, a new holomorphic alkaliphilic Ascomycete within the Plectosphaerellaceae, Persoonia, 2013a, vol. 31, pp. 147–158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Grum-Grzhimaylo, A.A., Georgieva, M.L., Debets, A.J.M., and Bilanenko, E.N., Are alkalitolerant fungi of the Emericellopsis lineage (Bionectriaceae) of marine origin?, IMA Fungus, 2013b, vol. 4, no. 2, pp. 213–228.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Grum-Grzhimaylo, A.A., Georgieva, M.L., Bondarenko, S.A., Debets, A.J.M., and Bilanenko, E.N., On the diversity of fungi from soda soils, Fungal Diversity, 2016, vol. 76, no. 1, pp. 27–74.

    Article  Google Scholar 

  29. Grum-Grzhimaylo, A.A., Falkoski, D.L., Heuvel, J., Valero-Jiménez, C.A., Min, B., Choi, I.G., Lipzen, A., Daum, C.G., Aanen, D.K., Tsang, A., Henrissat, B., Bilanenko, E.N., Vries, R.P., Kan, J.A.L., Grigoriev, I.V., and Debets, A.J.M., The obligate alkalophilic soda-lake fungus Sodiomyces alkalinus has shifted to a protein diet, Mol. Ecol., 2018, vol. 27, no. 23, pp. 4808–4819.

    Article  CAS  PubMed  Google Scholar 

  30. Hagestad, O.L., Hou, L., Andersen, J.H., Hansen, E.H., Altermark, B., Li, C., Kuhnert, E., Cox, R.J., Crous, P.W., Spatafora, J.W., Lail, K., Amirebrahimi, M., Lipzen, A., Pangilinan, J., Andreopoulos, W., Hayes, R.D., Ng, V., Grigoriev, I.V., Jackson, S.A., Sutton, T.D.S., Dobson, A.D.W., and Rämä, T., Genomic characterization of three marine fungi, including Emericellopsis atlantica sp. nov. with signatures of a generalist lifestyle and marine biomass degradation, IMA Fungus, 2021, vol. 12, pp. 1–23. https://doi.org/10.1186/s43008-021-00072-0

    Article  CAS  Google Scholar 

  31. Horikoshi, K., Alkaliphiles – genetic properties and applications of enzymes, Tokyo: Springer-Verlag, 2006.

    Google Scholar 

  32. Jeilu, O., Gessesse, A., Simachew, A., Johansson, E., and Alexandersson, E., Prokaryotic and eukaryotic microbial diversity from three soda lakes in the East African Rift Valley determined by amplicon sequencing, Front. Microbiol., 2022, vol. 13, p. 999876. https://doi.org/10.3389/fmicb.2022.999876

    Article  PubMed  PubMed Central  Google Scholar 

  33. Kompantseva, E.I., Bryantseva, I.A., Komova, A.V., and Namsaraev, B.B., The structure of phototrophic communities of soda lakes of the Southeastern Transbaikal region, Microbiology, 2007, vol. 76, no. 2, pp. 211–219.

    Article  CAS  Google Scholar 

  34. Kozyreva, L.P., Egorova, D.V., Namsaraev, B.B., Anan’ina, L.N., and Plotnikova, E.A., Microbial diversity of cellulolytic community of the sandy mat from lake Zun-Torey (Southern Transbaikalia), Inland Water Biol., 2014, vol. 7, no. 2, pp. 134–140.

    Article  Google Scholar 

  35. Kozlova, M.V., Bilanenko, E.N., Grum-Grzhimaylo, A.A., and Kamzolkina, O.V., An unusual sexual stage in the alkalophilic ascomycete Sodiomyces alkalinus, Fungal Biol., 2018, vol. 123, no. 2, pp. 140–150.

    Article  PubMed  Google Scholar 

  36. Kuvarina, A.E., Rogozhin, E.A., Sykonnikov, M.A., Timofeeva, A.V., Serebryakova, M.V., Fedorova, N.V., Kokaeva, L.Y., Efimenko, T.A., Georgieva, M.L., and Sadykova, V.S., Isolation and characterization of a novel hydrophobin, Sa-HFB1, with antifungal activity from an alkaliphilic fungus, Sodiomyces alkalinus, J. Fungi, 2022, vol. 8, no. 7, p. 659. https://doi.org/10.3390/jof8070659

    Article  CAS  Google Scholar 

  37. Lokot’, L.I., Strizhev, T.A., Gorlachev, E.P., et al., Sodovye ozera Zabaikal’ya: ekologiya i produktivnost’ (Soda Lakes of Transbaikalia: Ecology and Productivity), Novosibirsk: Nauka, 1991.

  38. Luo, W., Kotut, K., and Krienitz, L., Hidden diversity of eukaryotic plankton in the soda lake Nakuru, Kenya, during a phase of low salinity revealed by a SSU rRNA gene clone library, Hydrobiologia, 2013, vol. 702, pp. 95–103.

    Article  CAS  Google Scholar 

  39. Maza-Márquez, P., Lee, M.D., and Bebout, B.M., The abundance and diversity of fungi in a hypersaline microbial mat from Guerrero Negro, Baja California, México, J. Fungi, 2021, vol. 7, no. 3, p. 210. https://doi.org/10.3390/jof7030210

    Article  CAS  Google Scholar 

  40. MycoBank. Fungal Databases, Nomenclature and Species Banks. https://www.mycobank.org/. Cited January 16, 2023.

  41. Namsarev, B.B. and Barhutov, D.D., The Soda lakes of Transbaikalia are a unique ecosystem, Bull. Buryat. State Univ. Biol., 2018, no. 1, pp. 82–86.

  42. National Center for Biotechnology Information. Basic Local Alignment Search Tool. https://blast.ncbi.nlm. nih.gov/Blast.cgi. Cited January 16, 2023.

  43. Orwa, P., Mugambi, G., Wekesa, V., and Mwirichia, R., Isolation of haloalkaliphilic fungi from Lake Magadi in Kenya, Heliyon, 2020, vol. 6, no. 1, p. e02823. https://doi.org/10.1016/j.heliyon.2019.e02823

    Article  PubMed  PubMed Central  Google Scholar 

  44. Ponizovskaya, V.B., Rebrikova, N.L., Kachalkin, A.V., Antropova, A.B., Bilanenko, E.N., and Mokeeva, V.L., Micromycetes as colonizers of mineral building materials in historic monuments and museums, Fungal Biol., 2019, vol. 123, no. 4, pp. 290–306. https://doi.org/10.1016/j.funbio.2019.01.002

    Article  CAS  PubMed  Google Scholar 

  45. Rogozhin, E.A., Sadykova, V.S., Baranova, A.A., Vasilchenko, A.S., Lushpa, V.,A., Mineev, K., S., Georgieva, M.L., Kul’ko, A.B., Krasheninnikov, M.E., Lyundup, A.V., Vasilchenko, A.V., and Andreev, Ya.A., A novel lipopeptaibol Emericellipsin A with antimicrobial and antitumor activity produced by the extremophilic fungus Emericellopsis alkaline, Molecules, 2018, vol. 23, no. 11, p. 2785. https://doi.org/10.3390/molecules23112785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Salano, O.A., Makonde, H.M., Kasili, R.W., Wangai, L.N., Nawiri, M.P., and Boga, H.I., Diversity and distribution of fungal communities within the hot springs of soda lakes in the Kenyan rift valley, Afr. J. Microbiol. Res., 2017, vol. 11, no. 19, pp. 764–775.

    CAS  Google Scholar 

  47. Samylina, O.S., Namsaraev, Z.B., Grouzdev, D.S., Slobodova, N.V., Zelenev, V.V., Borisenko, G.V., and Sorokin, D.Y., The patterns of nitrogen fixation in haloalkaliphilic phototrophic communities of Kulunda Steppe soda lakes (Altai, Russia), FEMS Microbiol. Ecol., 2019, vol. 95, no. 11, p. fiz174. https://doi.org/10.1093/femsec/fiz174

    Article  CAS  PubMed  Google Scholar 

  48. Schagerl, M. and Renaut, R.W., Dipping into the soda lakes of East Africa, in Soda Lakes of East Africa, Schagerl, M., Ed., Springer-Verlag, 2016, pp. 3–24.

    Book  Google Scholar 

  49. Sharma, R., Prakash, O., Sonawane, M.S., Nimonkar, Y., Golellu, P.B., and Sharma, R., Diversity and distribution of phenol oxidase producing fungi from soda lake and description of Curvularia lonarensis sp. nov., Front. Microbiol., 2016, vol. 7, p. 1847. https://doi.org/10.3389/fmicb.2016.01847

    Article  PubMed  PubMed Central  Google Scholar 

  50. Somogyi, B., Felföldi, T., Boros, E., Szabó, A., and Vörös, L., Where the little ones play the main role—picophytoplankton predominance in the soda and hypersaline lakes of the Carpathian basin, Microorganisms, 2022, vol. 10, no. 4, p. 818. https://doi.org/10.3390/microorganisms10040818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sorokin, D.Y., Berben, T., Melton, E.D., Overmars, L., Vavourakis, C.D., and Muyzer, G., Microbial diversity and biogeochemical cycling in soda lakes, Extremophiles, 2014, vol. 18, pp. 791–809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. State Natural Biosphere Reserve “Daursky”. http://www. daurzapoved.com/. Cited January 16, 2023.

  53. Tkachuk, T.E. and Zhukova, O.V., Vegetation dynamics in Daursky nature reserve, Uch. Zap. Zabaykal’sk. Gos. Univ., Ser. Biol. Nauki, 2013, vol. 48, no. 1, pp. 46–57.

    Google Scholar 

  54. Tsybekmitova, G.Ts., Hydrochemistry of certain lakes of the On-Torean high plain, Mezhdunar. Zh. Prikl. Fundam. Issled., 2018, no. 11-1, pp. 144–148.

  55. Tsyrenova, D.D., Brianskaia, A.V., Kozyreva, L.P., Namsaraev, Z.B., and Namsaraev, B.B., Structure and formation properties of the haloalkaliphilic community of the Lake Khilganta, Mikrobiologiya, 2011, vol. 80, no. 2, pp. 251–257.

    CAS  Google Scholar 

  56. Tsyrenova, D.D., Namsarayev, B.B., and Bryanskaya, A.V., Taxonomic and ecological characterization of cyanobacteria from some brackish and saline lakes of Southern Transbaikal Region, Microbiology, 2011, vol. 80, pp. 216–227.

    Article  CAS  Google Scholar 

  57. Vidaković, D., Krizmanić, J., Dojčinović, B.P., Pantelić, A., Gavrilović, B., Živanović, M., Novaković, B., and Ćirić, M., Alkaline soda lake Velika Rusanda (Serbia): the first insight into diatom diversity of this extreme saline lake, Extremophiles, 2019, vol. 23, pp. 347–357. https://doi.org/10.1007/s00792-019-01088-6

    Article  PubMed  Google Scholar 

  58. Wei, Y. and Zhang, S.H., Haloalkaliphilic fungi and their roles in the treatment of saline-alkali soil, in Fungi in Extreme Environments: Ecological Role and Biotechnological Significance, Tiquia-Arashiro, S. and Grube, M., Eds., Cham: Springer-Verlag, 2019, pp. 535–557.

    Google Scholar 

  59. Westerdijk Fungal Biodiversity Institute. Pairwise alignment. https://wi.knaw.nl/page/Pairwise_alignment. Cited January 16, 2023.

  60. White, T.J., Bruns, T., Lee, S., and Taylor, J., Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics, in PCR Protocols: a Guide to Methods and Applications, 1990, vol. 18, no. 1, pp. 315–322.

  61. Zakharyuk, A.G., Kozyreva, L.P., and Namsaraev, B.B., Abundance and activity of the bacteria-destructors of organic matter in Saline-and-Soda Lake Khilganta (South Transbaikalia) in the pH-salinity gradient, Contemp. Probl. Ecol., 2010a, vol. 3, no. 4, pp. 463–468.

    Article  Google Scholar 

  62. Zakharyuk, A.G., Kozyreva, L.P., Yegorova, D.V., and Namsarayev, B.B., Physicochemical and microbiological characteristics of sand mats of the soda lake Zun-Torei, Vestn. Mosk. Gos. Obl. Univ., 2010b, no. 1, pp. 104–107.

  63. Zamana, L.V. and Borzenko, S.V., Hydrochemical regime of saline lakes in the southeastern Transbaikalia, Geogr. Nat. Resour., 2010, vol. 31, no. 4, pp. 370–376. https://doi.org/10.1016/j.gnr.2010.11.011

    Article  Google Scholar 

  64. Zavarzin, G.A., Alkalophilic microbial communities, in Trudy Instituta mikrobiologii im. S.N. Vinogradskogo (Proceedings of the Institute of Microbiology named after S.N. Vinogradsky), Moscow: Nauka, 2007, pp. 58–87.

  65. Zhilina, T.N. and Zavarzin, G.A., Alkaliphilic anaerobic community at pH 10, Curr. Microbiol., 1994, vol. 29, pp. 109–112. https://doi.org/10.1007/BF01575757

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to the organizers of the trip to the Daursky state biosphere reserve, E.B. Matyugina (Institute of Natural Resources, Siberian Branch, Russian Academy of Sciences) and E.S. Zadereev (Institute of Biophysics, Siberian Branch, Russian Academy of Sciences), which was held as part of the 13th International Conference on Salt Lake Research (ICSLR 2017), for the opportunity to visit unique natural biotopes and collect samples for research. We thank the staff of the Daursky Nature Reserve for their help in organizing the collection of samples and conducting research, as well as A.A. Kotov (Institute of Ecology and Evolution, Russian Academy of Sciences) for providing the samples collected on the coast of Lake Zun-Torey in 2018 for the study. We are also grateful to the staff of the Department of Mycology and Algology, Faculty of Biology, Moscow State University (E.Yu. Blagoveschenskaya and A.A. Georgiev) for their participation in discussing the results.

Funding

The study of Georgieva M.L. (morphological and cultural studies of fungi) is supported by the Russian Science Foundation (Grant no. 22-25-00353); research of Bilanenko E.N. and Bondarenko E.N. (study with a collection of fungi) was carried out as part of the Scientific Project of the State Order of the Government of Russian Federation to Lomonosov Moscow State University no. 121032300079-4; work of Markelova N.N. (genetic studies of fungi) was carried out as part of the scientific project of the state task of Gause Institute of New Antibiotics. SEM studies were carried out at the Shared Research Facility “Electron microscopy in life sciences” at Moscow State University (Unique Equipment “Three-dimensional electron microscopy and spectroscopy”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. L. Georgieva.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Georgieva, M.L., Bondarenko, S.A., Markelova, N. et al. Alkali-Resistant Filamentous Fungi of the Coastal Zone of the Dauria Saline Lakes. Contemp. Probl. Ecol. 16, 391–402 (2023). https://doi.org/10.1134/S1995425523040042

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995425523040042

Keywords:

Navigation