Skip to main content
Log in

Spatio-Temporal Variations in Macrobenthic Community Distribution on the Central Red Sea Coast: Role of Heavy Metal Content of the Sediment

  • Published:
Contemporary Problems of Ecology Aims and scope

Abstract

The aim of the present study was to assess the heavy metal pollution and benthic macrofauna distribution in central Red sea coast of Saudi Arabia. Sediment samples were collected from four stations around the Jeddah harbour during October 2018 and November 2019 for the analysis of heavy metals such as Cd, Cu, Pb and Zn. The distribution of macrobenthic communities was also analysed from the samples. The results indicated that the concentrations of Cd, Cu and Pb were high at stations near to the harbour. Metal content in sediment samples showed significant variation between the sampling stations. The density of bivalves showed a significant negative correlation with the concentration of Cu, Pb and Cd in the sediment. Polychaetes were abundant in stations which recorded high concentration of heavy metals such as Cu, Pb and Cd. Further, amphipods exhibited a positive relationship with Pb concentration of the sediment. In conclusion, this study outlined the significance of heavy metal pollution on structuring benthic biodiversity of the coastal ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Abroguena, J.B.R., Joydas, T.V., Pappathy, M., Cali, N.A., Alcaria, J., and Shoeb, M., Structure and composition of the macrobenthic community associated to shallow mangrove-seagrass habitat along the southern Red Sea coast, Saudi Arabia, Egypt. J. Aquat. Res., 2021, vol. 47, pp. 61–66.

    Article  Google Scholar 

  2. Afli, A., Ayari, A., and Zaabi, S., Ecological quality of some Tunisian coast and lagoon locations, by using benthic community parameters and biotic indices, Estuarine, Coastal Shelf Sci., 2008, vol. 80, pp. 269–280.

    Article  Google Scholar 

  3. Alharbi, T., Alfaifi, H., and El-Sorogy, A., Metal pollution in Al-Khobar seawater, Arabian Gulf, Saudi Arabia, Mar. Pollut. Bull., 2017, vol. 119, pp. 407–415.

    Article  CAS  PubMed  Google Scholar 

  4. Alhassan, A.B. and Aljahdali, M.O., Sediment metal contamination, bioavailability, and oxidative stress response in mangrove Avicennia marina in central Red Sea, Front. Environ. Sci., 2021, vol. 9, p. 185.

    Article  Google Scholar 

  5. Ali, A.H.A., Hamed, M.A., and Abd El-Azim, H., Heavy metals distribution in the coral reef ecosystems of the Northern Red Sea, Helgol. Mar. Res., 2011, vol. 65, pp. 67–80.

    Article  Google Scholar 

  6. Al-Mur, B.A., Geochemical fractionation of heavy metals in sediments of the Red Sea, Saudi Arabia, Oceanologia, 2020, vol. 62, pp. 31–44.

    Article  Google Scholar 

  7. Al-Mur, B.A., Quicksall, A.N., and Al-Ansari, A.M., Spatial and temporal distribution of heavy metals in coastal core sediments from the Red Sea, Saudi Arabia, Oceanologia, 2017, vol. 59, pp. 262–270.

    Article  Google Scholar 

  8. Alsaffar, Z.H.A., Shallow soft sediment communities in the central red sea: revealing patterns in community structure across space and time, PhD Thesis, Thuwal: King Abdullah Univ. Sci. Technol., 2018. https://repository. kaust.edu.sa/bitstream/handle/10754/630969/Zahra% 20Alsaffar%20(128392)%20PhD%20thesis_10Feb% 202019.pdf?isAllowed=y&sequence=14.

  9. Alsaffar, Z., Pearman, J.K., Curdia, J., Ellis, J., Calleja, M.L., Ruiz-Compean, P., Roth, F., Villalobos, R., Jones, B.H., Moran, X.A.G., and Carvalho, S. The role of seagrass vegetation and local environmental conditions in shaping benthic bacterial and macroinvertebrate communities in a tropical coastal lagoon, Sci. Rep., 2020, vol. 10, no. 1, pp. 1–17. https://doi.org/10.1038/s41598-020-70318-1

    Article  CAS  Google Scholar 

  10. Al-Taani, A.A., Batayneh, A., Nazzal, Y., Ghrefat, H., Elawadi, E., and Zaman, H., Status of trace metals in surface seawater of the Gulf of Aqaba, Saudi Arabia, Mar. Pollut. Bull., 2014, vol. 86, pp. 582–590.

    Article  CAS  PubMed  Google Scholar 

  11. Alzahrani, D.A., Selim, E.M.M., and El-Sherbiny, M.M., Ecological assessment of heavy metals in the grey mangrove (Avicennia marina) and associated sediments along the Red Sea coast of Saudi Arabia, Oceanologia, 2018, vol. 60, pp. 513–526.

    Article  Google Scholar 

  12. Ansari, T.M., Marr, I.L., and Tariq, N., Heavy metals in marine pollution perspective-a mini review, J. Appl. Sci., 2004, vol. 4, no. 1, pp. 1–20. https://doi.org/10.3923/jas.2004.1.20

    Article  Google Scholar 

  13. Badr, N.B., El-Fiky, A.A., Mostafa, A.R., and Al-Mur, B.A., Metal pollution records in core sediments of some Red Sea coastal areas, Kingdom of Saudi Arabia, Environ. Monit. Assess., 2019, vol. 155, pp. 509–526. https://doi.org/10.1007/s10661-008-0452-x

    Article  CAS  Google Scholar 

  14. Barbier, E.B., Valuing ecosystem services for coastal wetland protection and restoration: progress and challenges, Resources, 2013, vol. 2, no. 3, pp. 213–230.

    Article  Google Scholar 

  15. Canning-Clode, J., Fofonoff, P., Riedel, G.F. Torchin, M., and Ruiz, G.M., The effects of copper pollution on fouling assemblage diversity: a tropical-temperate comparison, PLoS One, 2011, vol. 6, p. e18026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Carroll, M.L., Johnson, B.J., Henkes, G.A., McMahon, K.W., Voronkov, A., Ambrose, W.G. Jr., and Denisenko, S.G., Bivalves as indicators of environmental variation and potential anthropogenic impacts in the southern Barents Sea, Mar. Pollut. Bull., 2009, vol. 59, pp. 193–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Choi, C., Battley, P.F., Potter, M.A., and Murray, A., Factors affecting the distribution patterns of benthic invertebrates at a major shorebird staging site in the Yellow Sea, China, Wetlands, 2014, vol. 34, pp. 1085–1096. https://doi.org/10.1007/s13157-014-0568-4

    Article  Google Scholar 

  18. Culhane, F.E., Briers, R.A., Tett, P., and Fernandes, T.F., Response of a marine benthic invertebrate community and biotic indices to organic enrichment from sewage disposal, J. Mar. Biol. Assoc. U.K., 2019, vol. 99, no. 8, pp. 1721–1734.

    Article  CAS  Google Scholar 

  19. Dafforn, K.A., Kelaher, B.P., Simpson, S.L., Coleman, M.A., Hutchings, P.A., Clark, G.F., Knott, N.A., Doblin, M.A., and Johnston, E.L., Polychaete richness and abundance enhanced in anthropogenically modified estuaries despite high concentrations of toxic contaminants, PLoS One, 2013, vol. 8, p. e77018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dauvin, J.C., Effects of heavy metal contamination on the macrobenthic fauna in estuaries: the case of the Seine estuary, Mar. Pollut. Bull., 2008, vol. 57, nos. 1–5, pp. 160–169. https://doi.org/10.1016/j.marpolbul.2007.10.012

    Article  CAS  PubMed  Google Scholar 

  21. DeForest, D., Brix, K., and Adams, W., Assessing metal bioaccumulation in aquatic environments: the inverse relationship between bioaccumulation factors, trophic transfer factors and exposure concentration, Aquat. Toxicol., 2007, vol. 84, pp. 236–246.

    Article  CAS  PubMed  Google Scholar 

  22. De-la-Ossa-Carretero, J.A., Del-Pilar-Ruso, Y., Gimenez-Casalduero, F., Sánchez-Lizaso, J.L., and Dauvin, J.C., Sensitivity of amphipods to sewage pollution, Estuarine, Coastal Shelf Sci., 2012, vol. 96, pp. 129–138.

    Article  CAS  Google Scholar 

  23. Dutertre, M., Hamon, D., Chevalier, C., and Ehrhold, A., The use of the relationships between environmental factors and benthic macrofaunal distribution in the establishment of a baseline for coastal management, ICES J. Mar. Sci., 2013, vol. 70, pp. 294–308. https://doi.org/10.1093/icesjms/fss170

    Article  Google Scholar 

  24. El Zokm, G.M., Al-Mur, B.A., and Okbah, M.A., Ecological risk indices for heavy metal pollution assessment in marine sediments of Jeddah coast in the Red Sea, Int. J. Environ. Anal. Chem., 2020. https://doi.org/10.1080/03067319.2020.1784888

  25. Ellis, J., Anlauf, H., Kürten, S., Lozano-Cortes, D., Alsaffar, Z., Cúrdia, J., Jones, B., and Carvalho, S., Cross shelf benthic biodiversity patterns in the Southern Red Sea, Sci. Rep., 2017, vol. 7, no. 1, pp. 1–14. https://doi.org/10.1038/s41598-017-00507-y

    Article  CAS  Google Scholar 

  26. Gattuso, J.P., Frankignoulle, M., and Wollast, R., Carbon and carbonate metabolism in coastal aquatic ecosystems, Annu. Rev. Ecol. Evol. Syst., 1998, vol. 29, pp. 405–434.

    Article  Google Scholar 

  27. Gesteira, J.G. and Dauvin, J.C., Amphipods are good bioindicators of the impact of oil spills on soft-bottom macrobenthic communities, Mar. Pollut. Bull., 2000, vol. 40, no. 11, pp. 1017–1027.

    Article  Google Scholar 

  28. Gladstone, W., Tawfiq, N., Nasr, D., Andersen, I., Cheung, C., Drammeh, H., Krupp, F., and Lintner, S., Sustainable use of renewable resources and conservation in the Red Sea and Gulf of Aden: issues, needs and strategic actions, Ocean Coastal Manage., 1999, vol. 42, pp. 671–697. https://doi.org/10.1016/S0964-5691(99)00040-X

    Article  Google Scholar 

  29. Gray, J. and Elliott, M., Ecology of Marine Sediments, Oxford: Oxford Univ. Press, 2009, 2nd ed.

    Book  Google Scholar 

  30. Gray, J.S., McIntyre, A.D., and Stirn, J., Manual Methods in Aquatic Environment Research, Part II: Biological Assessment of Marine Pollution, Rome: UN Food Agric. Org., 1992, vol. 324, p. 324.

    Google Scholar 

  31. Hansen, M.L., Piepenburg, D., Pantiukhin, D., and Kraan, C., Unraveling the effects of environmental drivers and spatial structure on benthic species distribution patterns in Eurasian-Arctic seas (Barents, Kara and Laptev seas), Polar Biol., 2020, vol. 43, no. 11, pp. 1693–1705. https://doi.org/10.1007/s00300-020-02737-9

    Article  Google Scholar 

  32. Hirose, K., Metal–organic matter interaction: ecological roles of ligands in oceanic DOM, Appl. Geochem., 2007, vol. 22, no. 8, pp. 1636–1645.

    Article  CAS  Google Scholar 

  33. Holzhauer, H., Borsje, B.W., van Dalfsen, J.A., Wijnberg, K.M., Hulscher, S.J., and Herman, P.M., Benthic species distribution linked to morphological features of a barred coast, J. Mar. Sci. Eng., 2020, vol. 8, no. 1, p. 16.https://doi.org/10.3390/jmse8010016

  34. Hyland, J., Balthis, L., Karakassis, I., Magni, P., Petrov, A., Shine, J., Vestergaard, O., and Warwick, R., Organic carbon content of sediments as an indicator of stress in the marine benthos, Mar. Ecol.: Progr. Ser., 2005, vol. 295, pp. 91–103.

  35. Iannuzzi, J., Butcher, M., and Iannuzzi, T., Evaluation of potential relationships between chemical contaminants in sediments and aquatic organisms from the lower Passaic River, New Jersey, USA, Environ. Toxicol. Chem., 2011, vol. 30, pp. 1721–1728.

    Article  CAS  PubMed  Google Scholar 

  36. Ji, Y., Zhang, J., Bai, C., Zhu, W., Cai, G., Hu, L., and Gao, G., Distribution characteristics of heavy metals in flood plains, farm fields and high lands in Lake Poyang region in China, J. Environ. Biol., 2017, vol. 38, pp. 1301–1311.

    Article  CAS  Google Scholar 

  37. Johnston, E.L. and Roberts, D.A., Contaminants reduce the richness and evenness of marine communities: a review and meta-analysis, Environ. Pollut., 2009, vol. 157, pp. 1745–1752.

    Article  CAS  PubMed  Google Scholar 

  38. Joydas, T.V., Qurban, M.A., Al-Suwailem, A., Krishnakumar, P.K., Nazeer, Z., and Cali, N.A., Macrobenthic community structure in the northern Saudi waters of the gulf, 14 years after the 1991 oil spill, Mar. Pollut. Bull., 2012, vol. 64, pp. 325–335.

    Article  CAS  PubMed  Google Scholar 

  39. Khalil, M.T., Bouwmeester, J., and Berumen, M.L., Spatial variation in coral reef fish and benthic communities in the central Saudi Arabian Red Sea, PeerJ, 2017, vol. 5, p. e3410. https://doi.org/10.7717/peerj.3410

    Article  PubMed  PubMed Central  Google Scholar 

  40. Langston, W.J., Toxic effects of metals and the incidence of metal pollution in marine ecosystems, in Heavy Metals in the Marine Environment, Furness, R.W. and Rainbow, P.S., Eds., Boca Raton, FL: CRC Press, 1990, pp. 101–122.

    Google Scholar 

  41. Markham, J.W., Kremefi, B.P., and Sperling, K.R., Effects of cadmium on Laminaria saccharina in culture, Mar. Ecol.: Prog. Ser., 1980, vol. 3, pp. 31–39.

    Article  CAS  Google Scholar 

  42. Meynard, A., Espinoza-González, C., Núñez, A., Castañeda, F., and Contreras-Porcia, L., Synergistic, antagonistic, and additive effects of heavy metals (copper and cadmium) and polycyclic aromatic hydrocarbons (PAHs) under binary and tertiary combinations in key habitat-forming kelp species of Chile, Environ. Sci. Pollut. Res., 2021 vol. 28, no. 14, pp. 18300–18307. https://doi.org/10.1007/s11356-021-13261-6

    Article  CAS  Google Scholar 

  43. Millward, R.N., Carman, K.R., Fleeger, J.W., Gambrell, R.P., and Portier, R., Mixtures of metals and hydrocarbons elicit complex responses by a benthic invertebrate community, J. Exp. Mar. Biol. Ecol., 2004, vol. 310, no. 1, pp. 115–130.

    Article  CAS  Google Scholar 

  44. Mrozinska, N. and Bąkowska, M., Effects of heavy metals in lake water and sediments on bottom invertebrates inhabiting the brackish coastal Lake Łebsko on the southern Baltic coast, Int. J. Environ. Res. Publ. Health, 2020, vol. 17, no. 18, p. 6848. https://doi.org/10.3390/ijerph17186848

    Article  CAS  Google Scholar 

  45. Nelson, W.G., A quantitative assessment of organic carbon content as a regional sediment-condition indicator, Ecol. Indic., 2020, vol. 114, p. 106318.

    Article  CAS  Google Scholar 

  46. Olsgard, F., Effects of copper contamination on recolonisation of subtidal marine soft sediments—an experimental field study, Mar. Pollut. Bull., 1999, vol. 38, pp. 448–462.

    Article  CAS  Google Scholar 

  47. Pan, K., Lee, O.O., Qian, Y.Y., and Wang, W.X., Sponges and sediments as monitoring tools of metal contamination in the eastern coast of the Red Sea, Saudi Arabia, Mar. Pollut. Bull., 2011, vol. 62, pp. 1140–1146. https://doi.org/10.1016/j.marpolbul.2011.02.043

    Article  CAS  PubMed  Google Scholar 

  48. Posey, M.H., Alphin, T.D., and Cahoon, L., Benthic community responses to nutrient enrichment and predator exclusion: influence of background nutrient concentrations and interactive effects, J. Exp. Mar. Biol. Ecol., 2006, vol. 330, no. 1, pp. 105–118.

    Article  CAS  Google Scholar 

  49. Post, A.L, Beaman, R.J., O’Brien, P.E., Eleaume, M., and Riddle, M.J., Community structure and benthic habitats across the George V Shelf, East Antarctica: trends through space and time, Deep Sea Res., Part II, 2011, vol. 58, pp. 105–118. https://doi.org/10.1016/j.dsr2.2010.05.020

    Article  Google Scholar 

  50. Re, A., Freitas, R., Sampaio, L., Rodrigues, A.M., and Quintino, V., Estuarine sediment acute toxicity testing with the European amphipod Corophium multisetosum Stock, 1952, Chemosphere, 2009, vol. 76, pp. 1323–1333.

    Article  CAS  PubMed  Google Scholar 

  51. Rousi, H., Korpinen, S., and Bonsdorff, E., Brackish-water benthic fauna under fluctuating environmental conditions: the role of eutrophication, hypoxia, and global change, Front. Mar. Sci., 2019, vol. 6, p. 464. https://doi.org/10.3389/fmars.2019.00464

    Article  Google Scholar 

  52. Ryu, J., Khim, J.S., Kang, S.G., Kang, D., Lee, C.H., and Koh, C.H., The impact of heavy metal pollution gradients in sediments on benthic macrofauna at population and community levels, Environ. Pollut., 2011, vol. 159, no. 10, pp. 2622–2629. https://doi.org/10.1016/j.envpol.2011.05.034

    Article  CAS  PubMed  Google Scholar 

  53. Salem, D.M.S.A., Khaled, A., El Nemr, A., and El-Sikaily, A., Comprehensive risk assessment of heavy metals in surface sediments along the Egyptian Red Sea coast, Egypt. J. Aquat. Res., 2014, vol. 40, pp. 349–362.

    Article  Google Scholar 

  54. Sampaio, E. and Rosa, R., Climate change, multiple stressors, and responses of marine biota, in Encyclopedia of the UN Sustainable Development Goals, Leal Filho, W., Azul, A.M., Brandli, L., Ozuyar, P.G., and Wall, T., Eds., Cham: Springer-Verlag, 2020. https://doi.org/10.1007/978-3-319-95885-9_90

  55. Schuckel, U., Beck, M., and Kroncke, I., Macrofauna communities of tidal channels in Jade Bay (German Wadden Sea): spatial patterns, relationships with environmental characteristics and comparative aspects, Mar. Biodiversity, 2015, vol. 45, pp. 841–855.

    Article  Google Scholar 

  56. Shaikh, E.A., Roff, J.C., and Dowidar, N.M., Phytoplankton ecology and production in the Red Sea off Jiddah, Saudi Arabia, Mar. Biol., 1986, vol. 92, pp. 405–416.

    Article  Google Scholar 

  57. Sharaf, H. and Shehata, A., Heavy metals and hydrocarbon concentrations in water, sediments and tissue of Cyclopeneritea from two sites in Suez Canal, Egypt and histopathological effects, J. Environ. Health Sci. Eng., 2015, vol. 13, p. 14. https://doi.org/10.1186/s40201-015-0171-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Siegel, S. and Castellan, N.J., Nonparametric Statistics for the Behavioral Sciences, New York: McGraw-Hill, 1988, pp. 213–215.

    Google Scholar 

  59. Snelgrove, P.V., The biodiversity of macrofaunal organisms in marine sediments, Biodiversity Conserv., 1998, vol. 7, pp. 1123–1132.

    Article  Google Scholar 

  60. Sokołowski, A., Wołowicz, M., Asmus, H., Asmus, R., Carlier, A., and Gasiunaite, Z., Is benthic food web structure related to diversity of marine macrobenthic communities? Estuarine, Coastal Shelf Sci., 2012, vol. 108, pp. 76–86. https://doi.org/10.1016/j.ecss.2011.11.011

    Article  CAS  Google Scholar 

  61. Srinivasan, M. and Swain, G.W., Managing the use of copper-based antifouling paints, Environ. Manage., 2007, vol. 39, pp. 423–441. https://doi.org/10.1007/s00267-005-0030-8

    Article  PubMed  Google Scholar 

  62. Stark, J.S., Heavy metal pollution and macrobenthic assemblages in soft sediments in two Sydney estuaries, Australia, Mar. Freshwater Res., 1998, vol. 49, pp. 533–540.

    Article  CAS  Google Scholar 

  63. Stewart, B.D., Jenkins, S.R., Boig, C., Sinfield, C., Kennington, K., Brand, A.R., Lart, W., and Kröger, R., Metal pollution as a potential threat to shell strength and survival in marine bivalves, Sci. Total Environ., 2021, vol. 755, p. 143019. https://doi.org/10.1016/j.scitotenv.2020.143019

    Article  CAS  PubMed  Google Scholar 

  64. Tabatabaie, T. and Amiri, F., The impact of industrial pollution on macrobenthic fauna communities, Afr. J. Environ. Sci. Technol., 2010, vol. 4, no. 9, pp. 547–557.

    Google Scholar 

  65. Todd, C.D., Larval supply and recruitment of benthic invertebrates: do larvae always disperse as much as we believe? in Recruitment, Colonization and Physical-Chemical Forcing in Marine Biological Systems, Dev. Hydrobiol. Ser., vol. 132, Baden, S., Phil, L., Rosenberg, R., Stromberg, J.O., Svane, I., and Tiselius, P., Eds., Dordrecht: Springer-Verlag, 1998. https://doi.org/10.1007/978-94-017-2864-5_1

  66. van Hoey, G., Degraer, S., and Vincx, M., Macrobenthic community structure of soft-bottom sediments at the Belgian continental shelf, Estuarine, Coastal Shelf Sci., 2004, vol. 59, pp. 599–613.

    Article  Google Scholar 

  67. Varfolomeeva, M.A., Biotic interactions, structure, and long-term changes in marine benthic communities, PhD Thesis, St. Petersburg: St. Petersburg State Univ., 2013.

  68. Youssef, M., Heavy metals contamination and distribution of benthic foraminifera from the Red Sea coastal area, Jeddah, Saudi Arabia, Oceanologia, 2015, vol. 57, no. 3, pp. 236–250. https://doi.org/10.1016/j.oceano.2015.04.002

    Article  Google Scholar 

  69. Youssef, M. and El-Sorogy, A., Environmental assessment of heavy metal contamination in bottom sediments of Al-Kharrar Lagoon, Rabigh, Red Sea, Saudi Arabia, Arab. J. Geosci., 2016, vol. 9, p. 474. https://doi.org/10.1007/s12517-016-2498-3

    Article  CAS  Google Scholar 

  70. Yusof, A.M., Yanta, N.F., and Wood, A.K.H., The use of bivalves as bio-indicators in the assessment of marine pollution along a coastal area, J. Radioanal. Nucl. Chem., 2004, vol. 259, no. 1, pp. 119–127.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This project was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, under the grant no. (G: 88-150-41). The authors, therefore, gratefully acknowledge the DSR for technical and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sathianeson Satheesh.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lafi Al Solami, Sathianeson Satheesh Spatio-Temporal Variations in Macrobenthic Community Distribution on the Central Red Sea Coast: Role of Heavy Metal Content of the Sediment. Contemp. Probl. Ecol. 15, 301–313 (2022). https://doi.org/10.1134/S1995425522030027

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995425522030027

Keywords:

Navigation