Skip to main content
Log in

Can the “Green Tides” Affect the Metal Distribution in the Coastal Sediments? A Case Study in the Eastern Gulf of Finland, Baltic Sea

  • Published:
Contemporary Problems of Ecology Aims and scope

Abstract

Our study has been conducted along the coastline of the eastern Gulf of Finland for three years. It had been shown that accumulation of algal biomass caused by the “green tide” events significantly influenced the metal distribution in the surface sediments. Metal concentrations differed significantly under algal mats and at the sites, which were free of algae. Our study showed significant changes in metal concentrations (Zn, Cd and Pb) along the coast in study years, which, in our opinion, reflect influence of the ports Vysotsk and a new one—Bronka. Principal component and classification analysis extracted two main factors, which can be interpreted as a factors related to the distance from a river mouth and to the input from the new anthropogenic sources. Taking into account a global climate change and the results of our study, we may conclude that in the future extended macroalgal blooms may provoke intense sediment contamination by organic matter and associated metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Arinushkina, E.V., Rukovodstvo po khimicheskomu analizu pochv (Manual on Soil Chemical Analysis), Moscow: Mosk. Gos. Univ., 1970.

  2. Bäck, S., Lehvo, A., and Blomster, J. Mass occurrence of the unattached Enteromorpha interstinalis on the Finnish Baltic coast, Ann. Bot. Fen., 2000, vol. 37, pp. 155–161.

    Google Scholar 

  3. Balina, K., Romagnoli, F., and Blumberga D., Chemical composition and potential use of Fucus vesiculosus from Gulf of Riga, Energy Procedia, 2016, vol. 95, pp. 43–49.

    CAS  Google Scholar 

  4. Berezina, N.A., Golubkov, S.M., and Gubelit, J.I., Grazing effects of alien amphipods on macroalgae in the littoral zone of the Neva estuary (eastern Gulf of Finland, Baltic Sea), Oceanol. Hydrobiol. Stud., 2005, vol. 34, pp. 63–82.

    Google Scholar 

  5. Berezina, N.A., Gubelit, Yu.I., Polyak, Yu.M., Sharov, A.N., Kudryavtseva, V. A., Lubimtsev, V.A., Petukhov, V.A., and Shigaeva, T.D., An integrated approach to the assessment of the eastern Gulf of Finland health: a case study of coastal habitats, J. Mar. Sys., 2017, vol. 171, pp. 159–171.

    Google Scholar 

  6. Caruso, G., Azzaro, F., La Ferla, R., De Pasquale, F., Raffa, F., and Decembrini, F., Microbial enzymatic activities and prokaryotic abundance in the upwelling system of the Straits of Messina (Sicily): distribution, dynamics and biogeochemical considerations, Adv. Oceanogr. Limnol., 2013a, vol. 4, no. 1, pp. 43–69.

    CAS  Google Scholar 

  7. Caruso, G., Azzaro, F., Azzaro, M., Decembrini, F., Ferla, R.L., Maimone, G., De Pasquale, F., Monticelli, L.S., Zaccone, R., Zappala, G., and Leonardi, M., Environmental variability in a transitional Mediterranean system (Oliverie Tindari, Italy): focusing on the response of microbial activities and prokaryotic abundance, Estuarine, Coastal Shelf Sci., 2013b, vol. 135, pp. 158–170.

    CAS  Google Scholar 

  8. Cloern, J.E., Our evolving conceptual model of the coastal eutrophication problem. Mar. Ecol.: Prog. Ser., 2001, vol. 210, pp. 223–253.

    CAS  Google Scholar 

  9. Del Giorgio, P.A., and Cole, J.J., Bacterial growth efficiency in natural aquatic ecosystems, Annu. Rev. Ecol. Syst., 1998, vol. 29, pp. 503–541.

    Google Scholar 

  10. Eglit, A.A., Orlova, N.V., Ostrikov, K.V., Vlasov, A.V., Skvortsov, V.M., Murashko, I.I., Silina, N.I., Popov, V.L., Kupriyanov, I.B., and Stulov, F.N., O sostoyanii okruzhayushchei sredy v Leningradskoi oblasti (State of the Environment in Leningrad Oblast), St. Petersburg: Kom. Prirod. Resur. Leningr. Obl., 2012.

  11. Emel’yanov, E.M. and Kravtsov, V.A., Transient and heavy metals in waters of the Gulf of Finland, in Problemy issledovnaiya i matematicheskogo modelirovaniya ekosistemy Baltiiskogo morya. Vyp. 5. Ekosistemnye modeli. Otsenka sovremennogo sostoyaniya Finskogo zaliva. Chast’ 2. Gidrometeorologicheskie, gidrokhimicheskie, gidrobiologicheskie, geologicheskie usloviya i dinamika vod Finskogo zaliva (Research and Mathematical Modeling of the Baltic Sea Ecosystem, No. 5: Ecosystem Models. Assessment of the Modern State of the Gulf of Finland, Part 1: Hydrometeorological, Hydrochemical, Hydrobiological, and Geological Conditions and Water Dynamics of the Gulf of Finland), St. Petersburg: Gidrometeoizdat, 1997, pp. 321–329.

  12. Emel’yanov, E.M., Gulbinskas, S., and Suzdalev, S., Biogenic component sand trace elements in the sediments of river mouths and accumulation areas of the Curonian Lagoon (south-eastern Baltic Sea), Baltika, 2015, vol. 28, no. 2, pp. 151–162.

    Google Scholar 

  13. Emel’yanov, E., Vallius, H., and Kravtsov, V., Heavy metals in sediments of the Gulf of Finland: a review, Baltika, 2017, vol. 30, no. 1, pp. 47–54.

    Google Scholar 

  14. Filimon, M.N., Nica, D.V., Ostafe, V., Bordean, D.-M., Borozan, A.B., Vlad, D.C., and Popescu, R., Use of enzymatic tools for biomonitoring inorganic pollution in aquatic sediments: a case study (Bor, Serbia), Chem. Cent. J., 2013, vol. 7, p. 59.

    PubMed  PubMed Central  Google Scholar 

  15. Golubkov, S.M., Berezina, N.A., Gubelit, Yu.I., Demchuk, A.S., Golubkov, M.S., and Tiunov, A.V., A relative contribution of carbon from green tide algae Cladophora glomerata and Ulva intestinalis in the coastal food webs in the Neva Estuary (Baltic Sea), Mar. Pollut. Bull., 2018, vol. 126, pp. 43–50.

    CAS  PubMed  Google Scholar 

  16. Gubelit, Yu.I., Climatic impact on community of filamentous macroalgae in the Neva estuary (eastern Baltic Sea), Mar. Pollut. Bull., 2015, vol. 91, pp. 166–172.

    CAS  PubMed  Google Scholar 

  17. Gubelit, Yu., Polyak, Yu., Dembska, G., Pazikowska-Sapota, G., Zegarowski, L., Kochura, D., Krivorotov, D., Podgornaya, E., Burova, O., and Maazouzi, Ch., Nutrient and metal pollution of the eastern Gulf of Finland coastline: Sediments, macroalgae, microbiota, Sci. Total Environ., 2016a, vol. 550, pp. 806–819.

    CAS  PubMed  Google Scholar 

  18. Gubelit, Yu., Berezina, N., Polyak, Yu., Dembska, G., and Pazikowska-Sapota G., “Green tides”: regulating factors and main consequences for the coastal zone in the eastern Gulf of Finland, Baltic Sea, Proc. of the Gulf of Finland Scientific Trilateral Forum, Abstracts of Papers, Helsinki: Finnish Environ. Inst., 2016b, p. 51.

  19. HELCOM core indicator report, 2018. ISSN 2343-2543

  20. Hu, B., Liang, D., Liu, J., and Xie, J., Ecotoxicological effects of Cu and Se combined pollution on soil enzyme activities in planted and unplanted soil, Environ. Toxicol. Chem., 2013, vol. 32, pp. 1109–1116.

    CAS  PubMed  Google Scholar 

  21. Jose, J., Giridhar, R., Anas, A., Loka Bharathi, P.A., and Nair, S., Heavy metal pollution exerts reduction/adaptation in the diversity and enzyme expression profile of heterotrophic bacteria in Cochin estuary, India, Environ. Pollut., 2011, vol. 159, pp. 2775–2780.

    CAS  PubMed  Google Scholar 

  22. Kacar, A., Investigation of heavy metal-resistant sediment bacteria and some water quality parameters: a case study of Lake Bafa (Turkey), Int. J. Environ. Res., 2015, vol. 9, no. 3, pp. 813-822.

    CAS  Google Scholar 

  23. Karandashev, V.K., Turanov, A.N., Orlova, T.A., Lezhnev, A.E., Nosenko, S.V., Zolotareva, N.I., and Moskvitina, I.R., Use of the inductively coupled plasma mass spectrometry for element analysis of environmental objects, Inorg. Mater., 2008, vol. 44, no. 14, pp. 1491–1500.

    CAS  Google Scholar 

  24. Karbassi, A.R., Bassam, S., and Ardestani, M., Flocculation of Cu, Mn, Ni, Pb, and Zn during estuarine mixing (Caspian Sea), Int. J. Environ. Res., 2013, vol. 7, no. 4, pp. 917—924.

    CAS  Google Scholar 

  25. Khaziev, F.H., Metody pochvennoi enzimologii (Methods of Soil Enzymology), Moscow: Nauka, 2005.

  26. Korzun, A., Nagornova, N., Oblomkova, N., Saukkoriipi, J., and Salminen, E., BASE Project 2012–2014: Assessment and Quantification of Nutrient Loads to the Baltic Sea from Leningrad Oblast and Transboundary Rivers, and the Evaluation of Their Sources, Helsinki: Balt. Mar. Environ. Protect. Com., 2014.

  27. Kuznetsov, C.I. and Dubinina, G.A., Metody izucheniya vodnykh mikroorganizmov (Methods of Studying of Aquatic Microorganisms), Moscow: Nauka, 1989.

  28. Lenzi, M., Gennaro, P., Mercatali, I., Persia, E., Solari, D., and Porrello, S., Physico-chemical and nutrient variable stratifications in the water column and in macroalgal thalli as a result of high biomass mats in a non-tidal shallow-water lagoon, Mar. Pollut. Bull., 2013, vol. 75, pp. 98–104.

    CAS  PubMed  Google Scholar 

  29. Levei, E., Ponta, M., Senila, M., Miclean, M., and Frentiu, T., Assessment of contamination and origin of metals in mining affected river sediments: a case study of the Aries River catchment, Romania, J. Serb. Chem. Soc., 2014, vol. 79, no. 8, pp. 1019—1036.

    CAS  Google Scholar 

  30. Lill, J.-O., Salovius-Lauren, S., Harju, L., Rajander, J., Saarela, K.-E., Lindroos, A., and Heselius, S.-J., Temporal changes in elemental composition in decomposing filamentous algae (Cladophora glomerata and Pilayella littoralis) determined with PIXE and PIGE, Sci. Total Environ., 2012, vol. 414, pp. 646–652.

    CAS  PubMed  Google Scholar 

  31. MacDonald, D.D., Ingersoll, C.G., and Berger, T.A., Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems, Arch. Environ. Contam. Toxicol., 2000, vol. 39, pp. 20–31.

    CAS  PubMed  Google Scholar 

  32. Mosher, J.J., Findlay, R.H., and Johnston, C.G., Physical and chemical factors affecting microbial biomass and activity in contaminated subsurface riverine sediments, Can. J. Microbiol., 2006, vol. 52, pp. 397–403.

    CAS  PubMed  Google Scholar 

  33. Ostov, I.M., Characteristic peculiarities of the hydrological and hydrochemical regime as the basis of its exploitation by the fish industry, in Biologicheskie i promyslovye resursy Finskogo zaliva (Biological and Fishery Resources of the Gulf of Finland), Leningrad, 1971, pp. 18–45.

    Google Scholar 

  34. Paerl, H.W., Dyble, J., Moisander, P.H., Noble, R.T., Piehler, M.F., Pinckney, J.L., Steppe, T.F., Twomey, L., and Valdes, L.M., Microbial indicators of aquatic ecosystem change: current applications to eutrophication studies, FEMS Microbiol. Ecol., 2003, vol. 46, pp.  233–246.

    CAS  PubMed  Google Scholar 

  35. Persaud, D., Jaagumagi, R., and Hayton, A., Guidelines for Protection and Management of Aquatic Sediment Quality in Ontario, Toronto: Ontario Minist. Environ., 1993.

    Google Scholar 

  36. Polyak, Y.M., Medvedeva, N.G., Gubelit, Y.I., Dembska, G., Zegarowski, L., and Sapota, G., Microbial population changes in the polluted coastal sediments of the Gulf of Finland, Baltic Sea, Proc. 2014 IEEE/OES Baltic International Symposium (BALTIC), Piscataway, NJ: Inst. Electr. Electron. Eng., 2014, pp. 1–5. https://doi.org/10.1109/BALTIC.2014.6887831

  37. Polyak, Y., Shigaeva, T., Gubelit, Y., Bakina, L., Kudryavtseva, V., and Polyak, M., Sediment microbial activity and its relation to environmental variables along the eastern Gulf of Finland coastline, J. Mar. Syst., 2017, vol. 171, pp. 101–110.

    Google Scholar 

  38. Polyak, Y.M., Bakina, L.G., Chugunova, M.V., Mayachkina, N.V., Gerasimov, A.O., and Bure, V.M., Effect of remediation strategies on biological activity of oil-contaminated soil—A field study, Int. Biodeterior. Biodegrad., 2018a, vol. 126, pp. 57–68.

    CAS  Google Scholar 

  39. Polyak, Y.M., Gubelit, Y.I., Shigaeva, T.D., Bakina, L.G., Kudryavtseva, V.A., Dembska, G., and Pazikowska-Sapota, G., Monitoring of the Gulf of Finland, Baltic Sea: anthropogenic pressure on biochemical processes in the coastal zone, Probl. Ecol. Monit. Ecosyst. Model., 2018b, vol. 19, no. 2, pp. 99–117.

    Google Scholar 

  40. Pratt, B., Riesen, R., and Johnston, C.G., PLFA analyses of microbial communities associated with PAH-contaminated riverbank sediment, Microb. Ecol., 2012, vol. 64, pp. 680–691.

    CAS  PubMed  Google Scholar 

  41. Prego, R., Belzunce Segarra, M.J., Helios-Rybicka, E., and Barciela, M.C., Cadmium, manganese, nickel and lead contents in surface sediments of the lower Ulla River and its estuary (northwest Spain), Bol. Inst. Esp. Oceanogr., 1999, vol. 15, nos. 1–4, pp. 495–500.

    Google Scholar 

  42. Rathnayake, V.N., Megharaj, M., Bolan, N., and Naidu, R., Tolerance of heavy metals by gram positive soil bacteria, World Acad. Sci. Eng. Technol., 2009, vol. 53, pp. 1185–1189.

    Google Scholar 

  43. Remeikaitė-Nikienė, N., Garnaga-Budrė, G., Lujanienė, G., Jokšas, K., Stankevičius, A., Malejevas, V., and Barisevičiūtė, R., Distribution of metals and extent of contamination in sediments from the south-eastern Baltic Sea (Lithuanian zone), Oceanologia, 2018, vol. 60, pp. 193–206.

    Google Scholar 

  44. Ryabchuk, D., Vallius, H., Zhamoida, V., Kotilainen, A.T., Rybalko, A., Malysheva, N., Deryugina, N., and Sukhacheva, L., Pollution history of Neva Bay bottom sediments (eastern Gulf of Finland, Baltic Sea), Baltika, 2017, vol. 30, no. 1, pp. 31–46.

    Google Scholar 

  45. Ryan, R., Ryan, D., and Dowling, D., Multiple metal resistant transferable phenotypes in bacteria as indicators of soil contamination with heavy metals, J. Soils Sediments, 2005, vol. 5, no. 2, pp. 95–100.

    CAS  Google Scholar 

  46. Rybalko, A.E. and Fedorova, N.K., Bottom sediments of the Neva estuary and its contamination under influence of anthropogenic processes, in Ekosistema estuariya reki Nevy: biologicheskoe raznoobrazie i ekologicheskie problemy (Ecosystem of the Neva River Estuary: Biological Diversity and Ecological Problems), Alimov, A.F. and Golubkov, S.M., Eds., Moscow: KMK, 2008, pp. 39–58.

  47. Sun, M.Y., Dafforn, K.A., Brown, M.V., and Johnston, E.L., Bacterial communities are sensitive indicators of contaminant stress, Mar. Pollut. Bull., 2012, vol. 64, no. 5, pp. 1029–1038.

    CAS  PubMed  Google Scholar 

  48. Telesh, I.V., Golubkov, S.M., and Alimov, A.F., The Neva Estuary ecosystem, in Ecology of Baltic Coastal Waters, Schiewer, U., Ed., Berlin: Springer-Verlag, 2008, pp. 259–284.

    Google Scholar 

  49. Tsyban, A.V., Rukovodstvo po metodam biologicheskogo analiza morskoi vody i donnykh otlozhenii (Manual on Biological Analysis of Seawater and Bottom Sediments), Leningrad: Gidrometeoizdat, 1980.

  50. Valiela, I., McClelland, J., Hauxwell, J., Behr, P.J., Hersh, D., and Foreman, K., Macroalgal blooms in shallow estuaries: controls and ecophysiological and ecosystem consequences, Limnol. Oceanogr., 1997, vol. 42, pp. 1105–1118.

    Google Scholar 

  51. Wei, N., Quarterman, J., and Jin, Y.-S., Marine macroalgae: an untapped resource of producing fuels and chemicals, Trends Biotechnol., 2013, vol. 31, pp. 70–77.

    CAS  PubMed  Google Scholar 

  52. Yao, X.H., Min, H., Lu, Z.H., and Yuan, H., Influence of acetamiprid on soil enzymatic activities and respiration, Eur. J. Soil Biol., 2006, vol. 42, pp. 120–126.

    CAS  Google Scholar 

  53. Zalewska, T., Woroń, J., Danowska, B., and Suplińska, M., Temporal changes in Hg, Pb, Cd and Zn environmental concentrations in the southern Baltic Sea sediments dated with 210Pb method, Oceanologia, 2015, vol. 57, no. 1, pp. 32–43.

    Google Scholar 

  54. Zbikowski, R., Use of artificial neural networks to identify the origin of green macroalgae, Estuarine, Coastal Shelf Sci., 2011, vol. 94, pp. 138–143.

    CAS  Google Scholar 

  55. Zbikowski, R., Szefer, P., and Latala, A., Comparison of green algae Cladophora sp. and Enteromorpha sp. as potential biomonitors of chemical elements in the southern Baltic, Sci. Total Environ., 2007, vol. 387, pp. 320–332.

    CAS  PubMed  Google Scholar 

Download references

Funding

The study had been supported by the state topic of Zoological Institute, Russian Academy of Sciences, project no. AAAA-A19-119020690091-0, state research topic of Scientific Research Center for Ecological Safety, Russian Academy of Sciences, project no. 0241-2019-0018, and a joint Program between Finland, Estonia and Russia “The Gulf of Finland Year 2014” coordinated by Finnish Environment Institute SYKE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. I. Gubelit.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gubelit, Y.I., Polyak, Y.M., Shigaeva, T.D. et al. Can the “Green Tides” Affect the Metal Distribution in the Coastal Sediments? A Case Study in the Eastern Gulf of Finland, Baltic Sea. Contemp. Probl. Ecol. 13, 113–126 (2020). https://doi.org/10.1134/S1995425520020043

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995425520020043

Keywords:

Navigation