Skip to main content
Log in

Thermomechanical Properties of Composites Based on High-Density Polyethylene and Aluminum

  • Published:
Polymer Science, Series D Aims and scope Submit manuscript

Abstract

This paper presents the results of an investigation of the influence of the aluminum-powder concentration on the thermomechanical characteristics of the composites based on the high-density polyethylene. We show that use of a compatibilizer—maleic anhydride–polyethylene graft copolymer—in a mixture with high-density polyethylene has an influence on the regularity of variation of the thermomechanical curves. We study the influence of various cross-linking agents (dicumyl peroxide and sulfur) on the thermomechanical properties of composites. At a particular dicumyl peroxide and sulfur concentration, the composites might reside in three physical states: solid, highly elastic, and viscous flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. A. A. Tager, Physicochemistry of Polymers, 4th ed. (Nauchnyi Mir, Moscow, 2007) [in Russian].

  2. V. Nelyub and G. Malysheva, “Modern treatment technologies of carbon fibre foe ensuring the high strength carbon fibre reinforced plastic,” MATEC Web Conf. 129, 02001 (2017).

  3. L. F. Kalistratova and V. A. Egorova, “Ordering of the amorphous phase as one of the characteristics of supramolecular structure of amorphous-crystalline polymer,” Inorg. Mater.: Appl. Res. 10, 933–938 (2019).

    Article  Google Scholar 

  4. M. A. Gorodetskii, V. A. Nelyub, G. V. Malysheva, A. Y. Shaulov, and A. A. Berlin, “Technology of forming and the properties of reinforced based on an inorganic binder,” Russ. Metall (Engl. Transl.) 2018 (13), 1195–1198 (2018).

  5. I. D. Simonov-Emel’yanov, “Structuring in dispersive filled polymers and properties of composite materials,” Plast. Massy, Nos. 9–10, 29–36 (2015).

    Google Scholar 

  6. N. T. Kakhramanov, A. D. Ismailzade, N. B. Arzumanova, U. M. Mammadli, and Q. S. Martinova, “Filled composites based on polyolefins and clinoptilolite,” Am. Sci. J. 4 (4), 60–65 (2016).

    Google Scholar 

  7. A. M. Kharaev, R. C. Bazheva, M. B. Begieva, V. A. Nelyub, and A. S. Borodulin, “Polyethersulfones with improved thermohysical properties,” Polym. Sci., Ser. D 12 (1), 24–28 (2019).

    Article  CAS  Google Scholar 

  8. S. M. Terekhina, G. V. Malysheva, I. M. Bulanov, and T. V. Tarasova, “Investigation of tribological properties of polymer composite materials based on bismaleimide binder,” Polym. Sci., Ser. D 4 (2), 136–137 (2011).

    Article  CAS  Google Scholar 

  9. N. T. Kakhramanov, A. G. Azizov, V. S. Osipchik, U. M. Mamedli, and H. B. Arzumanova, “Nanostructured composites and polymer materials science,” Int. Polym. Sci. Technol. 44 (2), 37–48 (2017).

    Article  Google Scholar 

  10. N. T. Kakhramanov, Kh. V. Allakhverdieva, M. I. Abdullin, and F. A. Mustafayeva, “Influence of aluminum powder concentration on mechanism and kinetic regularities of crystallization of composites based on low density polyethylene,” Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. 63 (2), 77–83 (2020).

    Article  Google Scholar 

  11. N. T. Kakhramanov, Z. N. Guseinova, and V. S. Osipchik, “The influence of the technological parameters of injection molding on the physico-mechanical properties of dynamic elastoplastic based on polyolefins,” Polymer Sci., Ser. D 12 (3), 317–321 (2019).

    Article  CAS  Google Scholar 

  12. I. P. Petryuk, “Influence of the parameters of a dispersed structure on the interphase layer content in filled polymers,” Plast. Massy, Nos. 5–6, 7–9 (2014).

    Google Scholar 

  13. A. A. Dyakonov, S. N. Danilova, A. P. Vasilyev, A. A. Okhlopkova, S. A. Sleptsova, and A. A. Vasilyeva, “Study of sulfur, diphenylguanidine and 2-mercaptobenzothiazole effect on physical and mechanical properties and structure of ultra-high molecular weight polyethylene,” Perspekt. Mater., No. 1, 43–53 (2020).

    Article  Google Scholar 

  14. Kh. V. Allakhverdieva and N. T. Kakhramanov, “Thermal-mechanical properties of composites and their vulcanizers based on low-density polyethylene and aluminum powder,” Vse Mater., No. 5, 14–19 (2020).

    Google Scholar 

  15. G. V. Kozlov and I. V. Dolbin, “Transfer of mechanical stress from polymer matrix to nanofiller in dispersion-filled nanocomposites,” Inorg. Mater.: Appl. Res. 10, 226–230 (2019).

    Article  Google Scholar 

  16. L. B. Atlukhanova, G. V. Kozlov, and I. V. Dolbin, “The correlation between the nanofiller structure and the properties of polymer nanocomposites: fractal model,” Inorg. Mater.: Appl. Res. 11, 188–191 (2020).

    Article  Google Scholar 

  17. Yu. K. Mashkov, L. F. Kalistratova, and O. V. Kropotin, “Development of methods of formation of effective structure-phase states of polymer composites based on PTFE,” Plast. Massy, Nos. 3–4, 12–14 (2017).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kh. V. Allahverdiyeva.

Additional information

Translated by I. Dikhter

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Allahverdiyeva, K.V., Kakhramanov, N.T. & Namazly, U.V. Thermomechanical Properties of Composites Based on High-Density Polyethylene and Aluminum. Polym. Sci. Ser. D 14, 598–602 (2021). https://doi.org/10.1134/S1995421222010026

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995421222010026

Keywords:

Navigation