Skip to main content
Log in

Rigorous Formulation of the Lasing Eigenvalue Problem as a Spectral Problem for a Fredholm Operator Function

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

We propose a new convenient for mathematical investigation formulation of the lasing eigenvalue problem as a spectral problem for an operator-valued function, which involves boundary integral operators. We prove that these integral operators are weakly singular and the operator of the problem is Fredholm with index zero.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Abramowitz and I. Stegun, Handbook of Mathematical Functions, 2nd ed. (Dover, New York, 1972).

    MATH  Google Scholar 

  2. S. V. Boriskina, P. Sewell, T. M. Benson, and A. I. Nosich, “Accurate simulation of two-dimensional optical microcavities with uniquely solvable boundary integral equations and trigonometric Galerkin discretization,” J. Opt. Soc. Am. A 21, 393–402 (2004).

    Article  Google Scholar 

  3. P. Heider, “Computation of scattering resonances for dielectric resonators,” Comput. Math. Appl. 60, 1620–1632 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  4. E. Karchevskii and A. Nosich, “Methods of analytical regularization in the spectral theory of open waveguides,” in Proceedings of the International Conference on Mathematical Methods in Electromagnetic Theory 2014, pp. 39–45.

    Google Scholar 

  5. O. Karma, “Approximation in eigenvalue problems for holomorphic Fredholm operator functions, I,” Numer. Function. Anal. Optim. 17, 365–387 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  6. O. Karma, “Approximation in eigenvalue problems for holomorphic Fredholm operator functions, II: convergence rate,” Numer. Function. Anal. Optim. 17, 389–408 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  7. T. Kato, Perturbation Theory for Linear Operators (Springer, New York, 1995).

    Book  MATH  Google Scholar 

  8. V. Kozlov and V. Maz’ya, “Holomorphic operator functions,” in Differential Equations with Operator Coefficients, With Applications to Boundary Value Problems for Partial Differential Equations, Springer Monographs inMathematics (Springer, Berlin, Heidelberg, 1999), Appendix A, pp. 403–430.

    Google Scholar 

  9. R. Kress, Linear Integral Equations (Springer, New York, 1999).

    Book  MATH  Google Scholar 

  10. C. Muller, Foundations of the Mathematical Theory of Electromagnetic Waves (Springer, Berlin, Heidelberg, 1969).

    Book  MATH  Google Scholar 

  11. E. I. Smotrova and A. I. Nosich, “Mathematical study of the two-dimensional lasing problem for the whispering-gallery modes in a circular dielectric microcavity,” Opt. Quantum Electron. 36, 213–221 (2004).

    Article  Google Scholar 

  12. E. I. Smotrova, V. O. Byelobrov, T. M. Benson, J. Č. tyroky, R. Sauleau, and A. I. Nosich, “Optical theorem helps understand thresholds of lasing in microcavities with active regions,” IEEE J. Quantum Electron. 47, 20–30 (2011).

    Article  Google Scholar 

  13. E. I. Smotrova, V. Tsvirkun, I. Gozhyk, C. Lafargue, C. Ulysse, M. Lebental, and A. I. Nosich, “Spectra, thresholds, and modal fields of a kite-shaped microcavity laser,” J. Opt. Soc. Am. B 30, 1732–1742 (2013).

    Article  Google Scholar 

  14. A. O. Spiridonov and E. M. Karchevskii, “Mathematical and numerical analysis of the spectral characteristics of dielectric microcavities with active regions,” in Proceedings of the International Conference on Days on Diffraction, 2016, pp. 390–395.

    Google Scholar 

  15. A. O. Spiridonov, E. M. Karchevskii, and A. I. Nosich, “Symmetry accounting in the integral-equation analysis of lasing eigenvalue problems for two-dimensional optical microcavities,” J. Opt. Soc. Am. B 34, 1435–1443 (2017).

    Article  Google Scholar 

  16. S. Steinberg, “Meromorphic families of compact operators,” Arch. Ration. Mech. Anal. 31, 372–379 (1968).

    Article  MathSciNet  MATH  Google Scholar 

  17. A. N. Tikhonov and A. A. Samarskii, Equations of Mathematical Physics (Dover, New York, 2013).

    MATH  Google Scholar 

  18. A. S. Zolotukhina, A. O. Spiridonov, E. M. Karchevskii, and A. I. Nosich, “Lasing modes of a microdisk with a ring gain area and of an active microring,” Opt. Quantum Electron. 47, 3883–3891 (2015).

    Article  Google Scholar 

  19. A. S. Zolotukhina, A. O. Spiridonov, E. M. Karchevskii, and A. I. Nosich, “Electromagnetic analysis of optimal pumping of a microdisk laser with a ring electrode,” Appl. Phys. B 123, 32 (2017).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. O. Spiridonov.

Additional information

(Submitted by E. K. Lipachev)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spiridonov, A.O., Karchevskii, E.M. & Nosich, A.I. Rigorous Formulation of the Lasing Eigenvalue Problem as a Spectral Problem for a Fredholm Operator Function. Lobachevskii J Math 39, 1148–1157 (2018). https://doi.org/10.1134/S1995080218080127

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995080218080127

Keywords and phrases

Navigation