Skip to main content
Log in

Vector equilibrium problems on unbounded sets

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

We consider a general vector equilibrium problem in a reflexive Banach space setting and propose a new coercivity condition for the case of unbounded sets. This condition enables us to obtain new existence results of solutions for vector equilibrium problems. We specialize these results for scalar equilibrium problems and vector variational inequalities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Baiocchi and A. Capelo, Variational and Quasivariational Inequalities: Applications to Free Boundary Problems, John Wiley and Sons (New York, 1984).

    MATH  Google Scholar 

  2. E. Blum and W. Oettli, From optimization and variational inequalities to equilibrium problems, The Mathem. Stud. 63, 123 (1994).

    MATH  MathSciNet  Google Scholar 

  3. I.V. Konnov, Generalized monotone equilibrium problems and variational inequalities, In: N. Hadjisavvas, S. Komlósi, and S. Schaible (Eds.), Handbook of Generalized Convexity and Generalized Monotonicity, “Nonconvex Optimization and Applications”, Vol. 76 (Springer, New York, 2005), p. 559.

    Google Scholar 

  4. F. Giannessi, Theorems of alternative, quadratic programs and complementarity problems, In: R.W. Cottle, F. Giannessi, and J.-L. Lions (Eds.), Variational Inequalities and Complementarity Problems (John Wiley and Sons, Chichester, 1980), p. 151.

    Google Scholar 

  5. R. Farquharson, Sur une généralisation de la notion d’équilibrium, Compt. Rend. Acad. Sci. Paris 240, 46 (1955).

    MATH  MathSciNet  Google Scholar 

  6. D. Blackwell, An analogue of the minimax theorem for vector payoffs, Pacific J.Math. 6, 1 (1956).

    MATH  MathSciNet  Google Scholar 

  7. T. Tanino and Y. Sawaragi, Duality theory in multiobjective optimization, J. Optim. Theory Appl. 27, 509 (1979).

    Article  MATH  MathSciNet  Google Scholar 

  8. V. V. Podinovskii and V. D. Nogin, Pareto-Optimal Solutions ofMulticriteria Problems (Nauka, Moscow, 1982) (in Russian).

    Google Scholar 

  9. I. V. Konnov, Combined relaxation methods for solving vector equilibrium problems, Russ. Math. (Iz. VUZ) 39(12), 51 (1995).

    MATH  MathSciNet  Google Scholar 

  10. Ky Fan, A minimax inequality and applications, In: O. Shisha (Ed.), Inequalities III (Academic Press, New York, 1972), p. 103.

    Google Scholar 

  11. G. Isac, A generalization of Karamardian’s condition in complementarity theory, Nonlin. Anal. Forum 4, 49 (1999).

    MATH  MathSciNet  Google Scholar 

  12. M. Bianchi, N. Hadjisavvas, and S. Schaible, Minimal coercivity conditions and exceptional families of elements in quasimonotone variational inequalities, J. Optim. Theory and Appl. 122, 1 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  13. M. Bianchi and R. Pini, Coercivity conditions for equilibrium problems, J. Optim. Theory and Appl. 124, 79 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  14. G. Isac, Leray-Schauder Type Alternatives, Complemantarity Problems and Variational Inequalities (Springer, Berlin, 2006).

    Google Scholar 

  15. I. V. Konnov, Regularization method for nonmonotone equilibrium problems, J. Nonlin. and Convex Anal. 10, 93 (2009).

    MATH  MathSciNet  Google Scholar 

  16. G. Y. Chen, X. X. Huang, and X. Q. Yang, Vector Optimization (Springer, Berlin, 2005).

    MATH  Google Scholar 

  17. F. Giannessi, Editor, Vector Variational Inequalities and Vector Equilibria. Mathematical Theories (Kluwer Academic Publishers, Dordrecht-Boston-London, 2000).

    MATH  Google Scholar 

  18. N. Hadjisavvas and S. Schaible, Quasimonotonicity and pseudomonotonicity in variational inequalities and equilibrium problems, In: J.-P. Crouzeix, J.-E. Martinez-Legaz, and M. Volle (Eds.), Generalized Convexity, Generalized Monotonicity (Kluwer Academic Publishers, Dordrecht-Boston-London, 1998), p. 257.

    Google Scholar 

  19. W. Oettli, A remark on vector-valued equilibria and generalized monotonicity, Acta Mathem. Vietnam. 22, 213 (1997).

    MATH  MathSciNet  Google Scholar 

  20. A. G. Sukharev, A. V. Timokhov, and V. V. Fedorov, A Course in Optimization Methods (Nauka, Moscow, 1986) (in Russian).

    Google Scholar 

  21. Fabián Flores-Bazán and Fernando Flores-Bazán, Vector equilibrium problems under asymptotic analysis, J. Global Optim. 26, 141 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  22. M. Bianchi, N. Hadjisavvas, and S. Schaible, Vector equilibrium problems with generalized monotone bifunctions, J. Optim. Theory Appl. 92, 527 (1997).

    Article  MATH  MathSciNet  Google Scholar 

  23. A. Daniilidis and N. Hadjisavvas, Existence theorems for vector variational inequalities, Bull. Austral. Math. Soc. 54, 473 (1996).

    Article  MATH  MathSciNet  Google Scholar 

  24. S. J. Yu and J. C. Yao, On vector variational inequalities, J. Optim. Theory Appl. 89, 749 (1996).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Konnov.

Additional information

Submitted by O.E. Tikhonov

This work was supported by the joint RFBR-NNSF grant, project No. 07-01-92101 and by the NNSF grant No. 10971019.

The second author was also supported by the Guangxi NSF grant No. 2010GXNSFA013114.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Konnov, I.V., Liu, Z. Vector equilibrium problems on unbounded sets. Lobachevskii J Math 31, 232–238 (2010). https://doi.org/10.1134/S1995080210030066

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995080210030066

Key words and phrases

Navigation