Skip to main content
Log in

ZnO-Based Nanocrystalline Films Obtained in a Single Vacuum Cycle

  • FUNCTIONAL AND CONSTRUCTION NANOMATERIALS
  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

The microstructure and functional properties of zinc oxide magnetron thin films depend on a number of factors: substrate temperature, mutual arrangement of the target and substrates, composition and pressure of residual and working gases, discharge power characteristics, target depletion rate, layer deposition rate, etc. At present, to study the influence of certain factors on the structure and properties of thin films, the method of successive deposition of a series of films with a stepwise change in one of the controlled parameters is used. At the same time, due to the large number of operating factors, as well as the complex nature of their impact, highlighting the contribution of each individual factor is a difficult and nontrivial task. The effect of the substrate temperature and the “target–substrate” distance on the structure and properties of zinc oxide films has been studied. At the same time, to minimize the influence of other factors with the help of an original system of heating and positioning of substrates, the concept of deposition of layers on substrates of the entire series with a change in only one controlled factor is implemented. This concept of deposition in a single vacuum cycle significantly lowers the requirements for the accuracy of controlling technological parameters of the process, reduces the impact on the final result of random unaccounted for factors, and also accelerates the preparation of the entire series of investigated thin-film samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. S. D. Ponja, S. Sathasivam, I. P. Parkin, and C. J. Carmalt, Sci. Rep. 10, 638 (2020). https://doi.org/10.1038/s41598-020-57532-7

    Article  CAS  Google Scholar 

  2. A. Sh. Asvarov, A. Kh. Abduev, A. K. Akhmedov, V. M. Kanevsky, and A. E. Muslimov, Crystallogr. Rep. 63, 994 (2018). https://doi.org/10.1134/S0023476118060036

    Article  CAS  Google Scholar 

  3. M. A. Shiryaev, Y. J. Jin, H. C. Bong, and A. Baranov, Nanotechnol. Russ. 12, 613 (2017). https://doi.org/10.1134/S199507801706009X

    Article  CAS  Google Scholar 

  4. Y.-P. Lee, Ch.-Ch. Lin, Ch.-Ch. Hsiao, et al., Micromachines 11, 14 (2020). https://doi.org/10.3390/mi11010014

    Article  Google Scholar 

  5. Z. Tseng, C. Chiang, and C. Wu, Sci. Rep. 5, 13211 (2015). https://doi.org/10.1038/srep13211

    Article  CAS  Google Scholar 

  6. A. Varanytsia, L. Weng, T. Lin, et al., J. Disp. Technol. 12, 1033 (2016). https://doi.org/10.1109/JDT.2016.2584779

    Article  CAS  Google Scholar 

  7. J. Costa, T. Peixoto, A. Ferreira, et al., J. Biomed. Mater. Res. A 107, 2150 (2019). https://doi.org/10.1002/jbm.a.36725

    Article  CAS  Google Scholar 

  8. H.-Y. Huang, H.-J. Chiang, C.-Z. Wu, et al., Micromachines 10, 434 (2019). https://doi.org/10.3390/mi10070434

    Article  Google Scholar 

  9. X.-Q. Tan, J.-Y. Liu, J.-R. Niu, et al., Materials 11, 1953 (2018). https://doi.org/10.3390/ma11101953

    Article  CAS  Google Scholar 

  10. A. K. Akhmedov, A. K. Abduev, V. M. Kanevsky, et al., Coatings 10, 269 (2020). https://doi.org/10.3390/coatings10030269

    Article  CAS  Google Scholar 

  11. N. M. S. Jahed, M. Mahmoudysepehr, and S. Sivoththaman, “Highly conductive TCO by RF sputtering of Al:ZnO for thin film photovoltaics,” in Proceedings of the 2015 IEEE 42nd Photovoltaic Specialist Conference PVSC, New Orleans, LA, 2015, pp. 1–4. https://doi.org/10.1109/PVSC.2015.7356300

  12. H. B. Zhou, H. Y. Zhang, M. L. Tan, et al., Mater. Res. Innov. 16, 390 (2012). https://doi.org/10.1179/1433075X12Y.0000000002

    Article  CAS  Google Scholar 

  13. F. Bittau, A. Abbas, K. L. Barth, et al., Thin Solid Films 633, 92 (2017). https://doi.org/10.1016/j.tsf.2016.10.068

    Article  CAS  Google Scholar 

  14. A. Abduev, A. Akhmedov, A. Asvarov, and V. Belyaev, SID Symp. Digest Tech. Pap. 50, 977 (2019). https://doi.org/10.1002/sdtp.13089

  15. M. Toma, D. Marconi, M. Pop, et al., Anal. Lett. 52, 2227 (2019). https://doi.org/10.1080/00032719.2019.1606819

    Article  CAS  Google Scholar 

  16. A. M. Ismailov, L. L. Emiraslanova, M. Kh. Rabadanov, M. R. Rabadanov, and I. Sh. Aliev, Tech. Phys. Lett. 44, 528 (2018). https://doi.org/10.1134/S1063785018060202

    Article  CAS  Google Scholar 

  17. A. K. Akhmedov, A. S. Asvarov, A. E. Muslimov, and V. M. Kanevsky, Coatings 10, 1076 (2020). https://doi.org/10.3390/coatings10111076

  18. A. Sh. Asvarov, A. E. Muslimov, A. K. Akhmedov, A. Kh. Abduev, and V. M. Kanevsky, Instrum. Exp. Tech. 62, 726 (2019). https://doi.org/10.1134/S0032816219050033

    Article  Google Scholar 

  19. E. Muchuweni, T. S. Sathiaraj, and H. Nyakotyo, Heliyon 3, e00285 (2017). https://doi.org/10.1016/j.heliyon.2017.e00285

    Article  CAS  Google Scholar 

  20. K. Ellmer and A. Bikowski, J. Phys. D 49, 413002 (2016). https://doi.org/10.1088/0022-3727/49/41/413002

    Article  CAS  Google Scholar 

  21. H. Rotella, Y. Mazel, S. Brochen, et al., J. Phys. D 50, 485106 (2017). https://doi.org/10.1088/1361-6463/aa920b

    Article  CAS  Google Scholar 

  22. F. Chaabouni, J. B. Belgacem, and M. Abaab, Chin. J. Phys. 52, 272 (2014). https://doi.org/10.6122/CJP.52.272

    Article  Google Scholar 

  23. Z. Huafu, L. Hanfa, Z. Aiping, and Y. Changkun, J. Semicond. 30, 113002 (2009). https://doi.org/10.1088/1674-4926/30/11/113002

  24. W. M. Lu, J. Zhang, H. W. Diao, et al., Mater. Sci. Forum 685, 134 (2011). https://doi.org/10.4028/www.scientific.net/msf.685.134

  25. M. Chaves, R. Ramos, E. Martins, et al., Mater. Res. 22, e20180665 (2019). https://doi.org/10.1590/1980-5373-mr-2018-0665

    Article  CAS  Google Scholar 

  26. A. Bikowski, T. Welzel, and K. Ellmer, Appl. Phys. Lett. 102, 242106 (2013). https://doi.org/10.1063/1.4811647

    Article  CAS  Google Scholar 

  27. Z. Ghorannevis, M. T. Hosseinnejad, M. Habibi, and P. Golmahdi, J. Theor. Appl. Phys. 9, 33 (2015). https://doi.org/10.1007/s40094-014-0157-1

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The work was carried out using the equipment of the Center for Collective Use of the Federal Scientific Research Center Crystallography and Photonics with the support of the Ministry of Education and Science (project RFMEFI62119X0035) and the Analytical Center for Collective Use of the Dagestan Federal Research Center.

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation within the framework of the State Assignments for the Dagestan Federal Research Center (Russian Academy of Sciences) and the Federal Scientific Research Center Crystallography and Photonics (Russian Academy of Sciences) as well as with the support of the Russian Foundation for Basic Research (grant nos. 20-07-00760 A, 18-29-12099 mk).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Sh. Asvarov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akhmedov, A.K., Abduev, A.K., Asvarov, A.S. et al. ZnO-Based Nanocrystalline Films Obtained in a Single Vacuum Cycle. Nanotechnol Russia 15, 741–746 (2020). https://doi.org/10.1134/S1995078020060026

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078020060026

Navigation