Skip to main content
Log in

Resonant and Anomalous Structures of Associative Ionization Spectra Involving Rydberg Atoms

  • ELEMENTARY PHYSICAL AND CHEMICAL PROCESSES
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

The features of the resonant and anomalous structure of the associative ionization (AI) spectra for the case of the dipole-dipole interaction of Rydberg atoms are analyzed using the stochastic approach. The use of this approach makes it possible to quantitatively describe the AI reaction with the formation of a positively charged molecular ion. It is found that the efficiency of asymmetric ionization processes for Auger transitions can exceed that of symmetric ones by orders of magnitude. The important role of this phenomenon for the development of modern applied quantum research and the concept about ionization processes occurring in the ionosphere is discussed. The obtained results can be used to solve a number of fundamental problems of ionospheric plasma physics. This especially concerns the time delay effect of signals of global navigation satellite systems (GNSS), which significantly affects the stability of GNSS operation and remote sensing of the Earth’s surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

REFERENCES

  1. A. N. Klucharev and V. Vujnović, Phys. Rep. 185, 55 (1990). https://doi.org/10.1016/0370-1573(90)90112-F

    Article  CAS  Google Scholar 

  2. A. N. Klucharev, Phys. Usp. 36 (6), 486 (1993). https://doi.org/10.1070/PU1993v036n06ABEH002162

    Article  Google Scholar 

  3. G. V. Golubkov, M. G. Golubkov, M. I. Manzhelii, and I. V. Karpov, in The Atmosphere and Ionosphere: Elementary Processes, Monitoring, and Ball Lightning, Ed. by V. L. Bychkov, G. V. Golubkov, and A. I. Nikitin (Springer, New York, 2014). https://doi.org/10.1007/978-3-319-05239-7_1

    Book  Google Scholar 

  4. S. E. Frish, Phys. Usp. 61 (4), 461 (1957).

    Article  CAS  Google Scholar 

  5. N. N. Bezuglov, G. V. Golubkov, and A. N. Klucharev, Manifestations of “Dynamic Chaos” in Reactions with Participation of Rydberg States (St. Petersburg State Univ., St. Petersburg, 2017).

    Google Scholar 

  6. M. Tabor, Chaos and Integrability in Nonlinear Dynamics (Wiley-Interscience, New York, 2001).

    Google Scholar 

  7. A. N. Klucharev and N. N. Bezuglov, Elementary Processes and Ionization Phenomena in Gas Media (St. Petersburg State Univ., St. Petersburg, 2013) [in Russian].

    Google Scholar 

  8. E. Fermi, Nuovo Cim. 11, 157 (1934). https://doi.org/10.1007/BF02959829

    Article  CAS  Google Scholar 

  9. G.V. Golubkov and A.Z. Devdariani, Russ. J. Phys. Chem. B 5, 892 (2011). https://doi.org/10.1134/S199079311106008X

    Article  CAS  Google Scholar 

  10. V. A. Alekseev and I. I. Sobelman, JETP 49, 1274 (1966).

    Google Scholar 

  11. M. A. Mazing and N. A. Vrublevskaya, JETP 50, 343 (1966).

    CAS  Google Scholar 

  12. A. N. Klucharev and A. V. Lazarenko, Opt. Spectrosc. 48, 412 (1980).

    Google Scholar 

  13. G. V.Golubkov and G. K. Ivanov, J. Phys. B: At. Mol. Phys. 21, 2049 (1988). https://doi.org/10.1088/0953-4075/21/11/019

    Article  CAS  Google Scholar 

  14. M. G. Golubkov, G. K. Ozerov, S. O. Adamson, et al., Chem. Phys. 462, 28 (2015). https://doi.org/10.1016/j.chemphys.2015.07.037

    Article  CAS  Google Scholar 

  15. G. V. Golubkov, G. K. Ivanov, and M. G. Golubkov, Khim. Fiz. 24 (6), 3 (2005).

    Google Scholar 

  16. G. V. Golubkov and G. K. Ivanov, Khim. Fiz. 22 (10), 25 (2003).

    CAS  Google Scholar 

  17. M. Reetz-Lamour, T. Amthor, J. Deiglmayr, et al., Fortschritte der Phys. 54, 776 (2006). https://doi.org/10.1002/prop.200610318

    Article  CAS  Google Scholar 

  18. M. T. Djerad, H. Harima, and M. Cheret, J. Phys. B: At. Mol. Phys. 18, L815 (1985). https://doi.org/10.1088/0022-3700/18/23/004

    Article  CAS  Google Scholar 

  19. A. Z. Devdariani, A. N. Klucharev, N. P. Penkin, and Y. N. Sebyakin, Opt. Spectrosc. 64, 706 (1988).

    CAS  Google Scholar 

  20. N. N. Bezuglov, V. M. Borodin, A. N. Klucharev, K. V. Orlovskii, and M. Allegrini, Opt. Spectrosc. 82, 334 (1997).

    Google Scholar 

  21. B. V. Chirikov, Phys. Rep. 52, 263 (1979). https://doi.org/10.1016/0370-1573(79)90023-1

    Article  Google Scholar 

  22. N. N. Bezuglov, V. M. Borodin, A. K. Kazanskii, et al., Opt. Spectrosc. 91, 19 (2001). https://doi.org/10.1134/1.1388319

    Article  CAS  Google Scholar 

  23. I. I. Beterov, D. B. Tretyakov, I. I. Ryabtsev, et al., J. Phys. B: At. Mol. Phys. 38, 4349 (2005). https://doi.org/10.1088/0953-4075/38/24/002

    Article  CAS  Google Scholar 

  24. K. Miculis, I. I. Beterov, N. N. Bezuglov, et al., J. Phys. B: At. Mol. Phys. 38, 1811 (2005). https://doi.org/10.1088/0953-4075/38/11/020

    Article  CAS  Google Scholar 

  25. D. K. Efimov, N. N. Bezuglov, A. N. Klucharev, and K. Miculis, Opt. Spectrosc. 117, 861 (2014). https://doi.org/10.1134/S0030400X14120066

    Article  CAS  Google Scholar 

  26. S. I. Chu and D. A. Telnov, Phys. Rep. 390, 1 (2004). https://doi.org/10.1016/j.physrep.2003.10.001

    Article  CAS  Google Scholar 

  27. E. Hairer, Numerical Geometric Integration (Universite de Geneve, Geneve, 1999).

    Google Scholar 

  28. L. Landau and E. M. Lifshits, Quantum Mechanics. Nonrelativistic Theory (Fizmatlit, Moscow, 2002) [in Russian].

    Google Scholar 

  29. K. N. Arefieff, K. Miculis, N. N. Bezuglov, et al., J. Astrophys. Astron. 36, 613 (2015). https://doi.org/10.1007/s12036-015-9358-5

    Article  Google Scholar 

  30. V. I. Arnold, Mathematical Methods of Classical Mechanics (Nauka, Moscow, 1974) [in Russian].

    Google Scholar 

  31. T. G. Walker and M. Saffman, J. Phys. B: At. Mol. Phys. 38, S309 (2005). https://doi.org/10.1088/0953-4075/38/2/022

    Article  CAS  Google Scholar 

  32. N. N. Bezuglov, E.N. Borisov, and Y.F. Verolainen, Phys. Usp. 34, 1 (1991). https://doi.org/10.1070/PU1991v034n01ABEH002331

    Article  Google Scholar 

  33. A. Sommerfeld, Atomic Structure and Spectral Lines (Gostekhizdat, Moscow, 1956).

    Google Scholar 

  34. M. Y. Zakharov, N. N. Bezuglov, A. N. Klucharev, et al., Russ. J. Phys. Chem. B 5, 537 (2011). https://doi.org/10.1134/S1990793111040117

    Article  CAS  Google Scholar 

  35. P. Pillet and T. F. Gallagher, J. Phys. B: At. Mol. Phys. 49, 174003 (2016). https://doi.org/10.1088/0953-4075/49/17/174003

    Article  CAS  Google Scholar 

  36. N. N. Bezuglov, V. M. Borodin, A. N. Klucharev, and M. Allegrini, Opt. Spectrosc. 79, 738 (1995).

    CAS  Google Scholar 

  37. A. A. Zalam, M. Bruvelis, K. Miculis, et al., J. Phys. B: At. Mol. Phys. 54, 065201 (2021). https://doi.org/10.1088/1361-6455/abd9fe

    Article  CAS  Google Scholar 

  38. V. M. Borodin, B. V. Dobrolezh, A. N. Klucharev, and A. B. Tsyganov, Opt. Spectrosc. 78, 15 (1995).

    Google Scholar 

  39. D. K. Efimov, K. Miculis, N. N. Bezuglov, and A. Ekers, J. Phys. B: At. Mol. Phys. 49, 125302 (2016). https://doi.org/10.1088/0953-4075/49/12/125302

    Article  CAS  Google Scholar 

  40. N. N. Bezuglov, V. M. Borodin, A. N. Klucharev, et al., Opt. Spectrosc. 86, 824 (1999).

    Google Scholar 

  41. M. W. McGeoch, R. E. Schlier, and G. K. Chawla, Phys. Rev. Lett. 61, 2088 (1988). https://doi.org/10.1103/PhysRevLett.61.2088

    Article  CAS  PubMed  Google Scholar 

  42. B. M. Smirnov and O. B. Firsov, JETP Lett. 2 (3), 478 (1965).

    CAS  Google Scholar 

  43. G. V. Golubkov, M. G. Golubkov, and M. I. Manzhelii, Russ. J. Phys. Chem. B 6, 112 (2012). https://doi.org/10.1134/S1990793112010186

    Article  CAS  Google Scholar 

  44. G.V. Golubkov, M.I. Manzhelii, A.A. Berlin, et al., Russ. J. Phys. Chem. B 15, 362 (2021). https://doi.org/10.1134/S1990793121020056

    Article  CAS  Google Scholar 

  45. S.-Y. Su, L.-C. Tsai, C.H. Liu, et al., Adv. Space Res. 64, 2137 (2019). https://doi.org/10.1016/j.asr.2019.06.039

    Article  Google Scholar 

  46. G. V. Golubkov, M. I. Manzhelii, A. A. Berlin, and A. A. Lushnikov, Russ. J. Phys. Chem. B 10, 77 (2016). https://doi.org/10.1134/S1990793116010024

    Article  CAS  Google Scholar 

  47. G. V. Golubkov, V. V. Kuverova, G. K. Ozerov, et al., Russ. J. Phys. Chem. B 11, 903 (2017). https://doi.org/10.1134/S1990793117060203

    Article  CAS  Google Scholar 

  48. S. Y. Umanskii, S. O. Adamson, A. S. Vetchinkin, et al., Russ. J. Phys. Chem. B 17, 346 (2023). https://doi.org/10.1134/S199079312302032X

    Article  CAS  Google Scholar 

  49. V. V. Kuverova, S. O. Adamson, A. A. Berlin, et al., Adv. Space Res. 64, 1876 (2019). https://doi.org/10.1016/j.asr.2019.05.041

    Article  CAS  Google Scholar 

  50. D. Farrah, K. E. Smith, D. Ardila, et al., J. Astron. Telesc. Instrum. Syst. 5, 020901 (2019). https://doi.org/10.1117/1.jatis.5.2.020901

    Article  Google Scholar 

  51. A. I. Rodionov, I. D. Rodionov, I. P. Rodionova, et al., Russ. J. Phys. Chem. B 15, 904 (2021). https://doi.org/10.1134/S1990793121050201

    Article  CAS  Google Scholar 

  52. G. V. Golubkov, M. I. Manzhelii, and L. V. Eppelbaum, Russ. J. Phys. Chem. B 12, 549 (2018). https://doi.org/10.1134/S1990793118030090

    Article  CAS  Google Scholar 

  53. G. V. Golubkov, S. O. Adamson, O. P. Borchevkina, et al., Russ. J. Phys. Chem. B 16, 508 (2022). https://doi.org/10.1134/S1990793122030058

    Article  CAS  Google Scholar 

  54. I. A. Nesterov and V. E. Kunitsyn, Adv. Space Res. 47, 1789 (2011). https://doi.org/10.1016/j.asr.2010.11.034

    Article  CAS  Google Scholar 

  55. S. Jin, J. U. Park, J. L. Wang, B. K. Choi, and P. H. Park, J. Navig. 59, 395 (2006). https://doi.org/10.1017/S0373463306003821

    Article  Google Scholar 

  56. N. N. Bezuglov, A. N. Klyucharev, and T. Stasevich, Opt. Spectrosc. 77, 304 (1994).

    Google Scholar 

Download references

Funding

This study was carried out in the framework of State Assignment of the Ministry of Science and Higher Education of the Russian Federation (project no. 122040500060-4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. G. Golubkov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golubkov, G.V., Bezuglov, N.N., Klucharev, A.N. et al. Resonant and Anomalous Structures of Associative Ionization Spectra Involving Rydberg Atoms. Russ. J. Phys. Chem. B 17, 1013–1024 (2023). https://doi.org/10.1134/S1990793123050202

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793123050202

Keywords:

Navigation