Skip to main content
Log in

Monitoring Greenhouse Gases in the Open Atmosphere by the Fourier Spectroscopy Method

  • STRUCTURE OF CHEMICAL COMPOUNDS, QUANTUM CHEMISTRY, SPECTROSCOPY
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

The problem of global climate change has become one of the most important challenges to humanity in the 21st century. The main reason is the appearance in the atmosphere of an excessive concentration of greenhouse gases, which absorb the thermal radiation of the Earth and partially return it to the Earth’s surface. The accumulation of greenhouse gases in the atmosphere leads to a rapid increase in the global average air temperature and, as a result, climate change. It is well known that greenhouse gases have a high transparency in the visible spectral range and high absorption in the infrared range. In this paper, we propose a new technique for recording the CO2 and CH4 spectra. An experimental setup based on dynamic Fourier spectrometer is developed. It allows to record IR absorption spectra in the wavelength range of 1.0 to 1.7 μm with a 10 cm–1 spectral resolution. Long-term recording of the atmospheric transmittance in the conditions of urban development is carried out. Based on the obtained data, the CO2 and CH4 integral and volumetric concentrations are monitored. It is shown that the carbon dioxide and methane volumetric concentrations time dependences accurately reflects the traffic congestion degree on that day. Reduction of volume concentrations in the evening hours is explained by the increase of the optical path and the additional capture of air masses outside the heavy traffic area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

REFERENCES

  1. I. Manisalidis, E. Stavropoulou, A. Stavropoulos, et al., Front. Public Health 8, 14 (2020). https://doi.org/10.3389/fpubh.2020.00014

    Article  PubMed  PubMed Central  Google Scholar 

  2. I. K. Larin, Khim. Fiz. 39 (3), 85 (2020). https://doi.org/10.31857/S0207401X20030085

    Article  Google Scholar 

  3. I. K. Larin, Khim. Fiz. 39 (4), 44 (2020). https://doi.org/10.31857/S0207401X20040111

    Article  Google Scholar 

  4. S. Solomon, D. Qin, M. Manning, et al., Climate Change 2007: The Physical Science Basis (Cambridge: Cambridge Univ. Press, 2007).

    Google Scholar 

  5. Advances in Carbon Capture, Ed. by M. R. Rahimpour, M. Farsi, and M. A. Makarem (Elsevier, Cambridge, 2020).

    Google Scholar 

  6. A. E. Galashev and O. R. Rakhmanova, Khim. Fiz. 32 (6), 88 (2013). https://doi.org/10.7868/S0207401X13060022

    Article  CAS  Google Scholar 

  7. NOAA Greenhouse Gas Marine Boundary Layer Reference. https://gml.noaa.gov/ccgg/mbl/data.php.

  8. M. Ramphull and D. Surroop, J. Environ. Chem. Eng. 5 (6), 5994 (2017). https://doi.org/10.1016/j.jece.2017.11.027

    Article  CAS  Google Scholar 

  9. J. Bi, R. Zhang, H. Wang, et al., Energy Policy 39 (9), 4785 (2011). https://doi.org/10.1016/j.enpol.2011.06.045

    Article  Google Scholar 

  10. M. G. Da Silva, A. C. L. Lisbôa, R. Hoffmann, et al., J. Environ. Chem. Eng. 9 (3), 105202 (2021). https://doi.org/10.1016/j.jece.2021.105202

    Article  CAS  Google Scholar 

  11. P. B. Ramos, M. F. Ponce, F. Jerez, et al., J. Environ. Chem. Eng. 10 (3), 107521 (2022). https://doi.org/10.1016/j.jece.2022.107521

    Article  CAS  Google Scholar 

  12. A. J. Turner, A. A. Shusterman, B. C. McDonald, et al., Atmos. Chem. Phys. 16 (21), 13465 (2016). https://doi.org/10.5194/acp-16-13465-2016

    Article  CAS  Google Scholar 

  13. J. K. Lee, A. Christen, R. Ketler, et al., Atmos. Meas. Tech. 10 (2), 645 (2017). https://doi.org/10.5194/amt-10-645-2017

    Article  CAS  Google Scholar 

  14. U. Platt and J. Stutz, Differential Optical Absorption Spectroscopy (Springer, Berlin, 2008). https://doi.org/10.1007/978-3-540-75776-4

    Book  Google Scholar 

  15. Handbook of Vibrational Spectroscopy, Ed. by P. R. Griffiths (Wiley & Sons, Chichester, 2006), p. 1750.

    Google Scholar 

  16. D. W. T. Griffith and I. M. Jamie, Encyclopedia of Analytical Chemistry (Wiley & Sons, Chichester, 2000), Vol. 3, p. 1979.

    Google Scholar 

  17. T. E. L. Smith, M. J. Wooster, M. Tattaris, et al., Atmos. Meas. Tech. 4 (1), 97 (2011). https://doi.org/10.5194/amt-4-97-2011

    Article  Google Scholar 

  18. J. Laubach, M. Bai, C. S. Pinares-Patiño, et al., Agric. For. Meteorol. 176, 50 (2013). https://doi.org/10.1016/j.agrformet.2013.03.006

    Article  Google Scholar 

  19. T. K. Flesch, V. S. Baron, J. D. Wilson, et al., Agric. For. Meteorol. 221, 111 (2016). https://doi.org/10.1016/j.agrformet.2016.02.010

    Article  Google Scholar 

  20. I. B. Vintaikin, I. S. Golyak, P. A. Korolev, et al., Khim. Fiz. 40 (5), 9 (2021). https://doi.org/10.31857/S0207401X21050137

    Article  Google Scholar 

  21. G. Kirchengast and S. Schweitzer, Geophys. Res. Lett. 38 (13), L13701 (2011). https://doi.org/10.1029/2011GL047617

    Article  CAS  Google Scholar 

  22. T. Somekawa, N. Manago, H. Kuze, et al., Opt. Lett. 36 (24), 4782 (2011). https://doi.org/10.1364/OL.36.004782

    Article  CAS  PubMed  Google Scholar 

  23. H. Saito, N. Manago, K. Kuriyama, et al., Opt. Lett. 40 (11), 2568 (2015). https://doi.org/10.1364/OL.40.002568

    Article  CAS  PubMed  Google Scholar 

  24. G. B. Rieker, F. R. Giorgetta, W. C. Swann, et al., Optica 1 (5), 290 (2014). https://doi.org/10.1364/OPTICA.1.000290

    Article  CAS  Google Scholar 

  25. E. M. Waxman, K. C. Cossel, G. W. Truong, et al., Atmos. Meas. Tech. 10 (9), 3295 (2017). https://doi.org/10.5194/amt-10-3295-2017

    Article  PubMed  PubMed Central  Google Scholar 

  26. J. Dobler, M. Braun, N. Blume, et al., Remote Sens. 5 (12), 6284 (2013). https://doi.org/10.3390/rs5126284

    Article  Google Scholar 

  27. M. Queißer, D. Granieri, and M. Burton, Sci. Rep. 6 (1), 33834 (2016). https://doi.org/10.1038/srep33834

    Article  CAS  Google Scholar 

  28. I. S. Golyak, A. N. Morozov, S. I. Svetlichnyi, et al., Khim. Fiz. 38 (7), 3 (2019). https://doi.org/10.1134/S0207401X19070057

    Article  Google Scholar 

  29. D. Wunch, G. C. Toon, J. F. L. Blavier, et al., Philos. Trans. R. Soc. London, Ser. A 369 (1943), 2087 (2011). https://doi.org/10.1098/rsta.2010.0240

  30. O. Schneising, M. Buchwitz, M. Reuter, et al., Atmos. Chem. Phys. 11 (6), 2863 (2011). https://doi.org/10.5194/acp-11-2863-2011

    Article  CAS  Google Scholar 

  31. Y. Yoshida, Y. Ota, N. Eguchi, et al., Atmos. Meas. Tech. 4 (4), 717 (2011). https://doi.org/10.5194/amt-4-717-2011

    Article  CAS  Google Scholar 

  32. G. V. Golubkov, G. Yu. Grigor’ev, Sh. Sh. Nabiev, et al., Khim. Fiz. 37 (10), 3 (2018). https://doi.org/10.1134/S0207401X18090054

    Article  Google Scholar 

  33. A. I. Rodionov, I. D. Rodionov, I. P. Rodionova, et al., Khim. Fiz. 40 (10), 61 (2021). https://doi.org/10.31857/S0207401X21100113

    Article  Google Scholar 

  34. P. Kaufmann, H. M. Chrzanowski, A. Vanselow, et al., Opt. Express 30 (4), 5926 (2022). https://doi.org/10.1364/OE.442411

    Article  CAS  PubMed  Google Scholar 

  35. D. G. Winters, P. Schlup, and R. A. Bartels, Opt. Express 15 (3), 1361 (2007). https://doi.org/10.1364/OE.15.001361

    Article  PubMed  Google Scholar 

  36. N. S. Vasil’ev, I. B. Vintaikin, I. S. Golyak, et al., Komp’yut. Opt. (Samara) 41 (5), 626 (2017). https://doi.org/10.18287/2412-6179-2017-41-5-626-635

    Article  Google Scholar 

  37. M. H. Köhler, S. S. Naßl, P. Kienle, et al., Appl. Opt. 58 (13), 3393 (2019). https://doi.org/10.1364/ao.58.003393

    Article  CAS  PubMed  Google Scholar 

  38. A. N. Morozov and S. I. Svetlichnyi, Fundamentals of Fourier Radio Spectrometry, 2nd ed. (Nauka, Moscow, 2014) [in Russian].

    Google Scholar 

  39. C. H. Lin, R. H. Grant, A. J. Heber, et al., Atmos. Meas. Tech. 12 (6), 3403 (2019). https://doi.org/10.5194/amt-12-3403-2019

    Article  CAS  Google Scholar 

  40. A. A. Balashov, V. A. Vagin, I. S. Golyak, et al., Zh. Prikl. Spectrosk. 84 (4), 643 (2017).

    Google Scholar 

  41. P. R. Griffiths and J. A. de Haseth, Fourier Transform Infrared Spectrometry, 2nd ed. (Hoboken, NJ: Wiley & Sons, 2007). https://doi.org/10.1002/047010631X

    Book  Google Scholar 

  42. A. A. Balashov, Il. S. Golyak, Ig. S. Golyak, et al., Zh. Prikl. Spektrosk. (Minsk) 85 (5), 822 (2018).

  43. Sh. Sh. Nabiev, G. Yu. Grigor’ev, A. S. Lagutin, et al., Khim. Fiz. 38 (7), 49 (2019). https://doi.org/10.1134/s0207401x19070124

    Article  Google Scholar 

  44. F. Patadia, R. C. Levy, and S. Mattoo, Atmos. Meas. Tech. 11 (6), 3205. https://doi.org/10.5194/amt-11-3205-2018

  45. L. S. Rothman, I. E. Gordon, Y. Babikov, et al., J. Quantum Spectrosc. Radiat. Transfer 130, 4 (2013). https://doi.org/10.1016/j.jqsrt.2013.07.002

    Article  CAS  Google Scholar 

Download references

Funding

This study was carried out as part of a program of strategic academic leadership “Priority-2030” and a state task of the Ministry of Science and Higher Education of the Russian Federation (topic no. 122040500060-4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Il. S. Golyak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golyak, I.S., Anfimov, D.R., Vintaykin, I.B. et al. Monitoring Greenhouse Gases in the Open Atmosphere by the Fourier Spectroscopy Method. Russ. J. Phys. Chem. B 17, 320–328 (2023). https://doi.org/10.1134/S1990793123020264

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793123020264

Keywords:

Navigation