Skip to main content
Log in

Picric Acid Adsorption on the Surface of Pristine and Al-doped Boron Nitride Nanocluster: a Comprehensive Theoretical Study

  • CHEMICAL PHYSICS OF NANOMATERIALS
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

In this research, the performance of pristine and Al-doped boron nitride nanocage as a sensing material and adsorbent for the detection and removal of picric acid was investigated by infra-red (IR), frontier molecular orbital (FMO), and natural orbital bond (NBO) computations. The calculated negative adsorption energies showed that picric acid interactions with both pristine and Al-doped adsorbents were experimentally feasible. The NBO results indicated that picric acid interactions with B12N12 and AlB11N12 were chemisorption and physisorption, respectively. The negative values of adsorption enthalpy changes and Gibbs free energy changes demonstrated that picric acid interaction with both adsorbents was exothermic and spontaneously. The values of thermodynamic equilibrium constants (Kth) revealed that picric acid adsorption on the surface of pristine and Al-doped adsorbents was irreversible and reversible, respectively. The increase in the specific heat capacity (CV) of both nanostructures in the adsorption process showed that both adsorbents could be used as a sensing material for the construction of new thermal sensors for picric acid detection. In the adsorption process, the bandgap of B12N12 declined by 38.811%: from 14.970 to 9.160 eV; but the bandgap of AlB11N12 decreased by 72.495%: from 12.520 to 3.444 eV. Hence, the Al-doped boron nitride cage was a better sensing material for the development of novel electrochemical sensors for the determination of picric acid. The results of temperature and solvent effects on the interaction process showed that the adsorption process was more favorable at lower temperatures and the presence of water had no significant effects on the interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. M. Nipper, R. S. Carr, J. M. Biedenbach, et al., Mar. Pollut. Bull. 50, 1205 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. C. C. Dennie, W. L. McBride, and P. E. Davis, Arch. Derm. Syphilol. 20, 698 (1929).

    Article  Google Scholar 

  3. D. R. Bhatt, K. C. Maheria, and J. K. Parikh, J. Hazard. Mater. 300, 338 (2015).

    Article  CAS  PubMed  Google Scholar 

  4. M. Mahyari, Int. J. Environ. Anal. Chem. 96, 1455 (2016).

    Article  CAS  Google Scholar 

  5. H. Parham, B. Zargar, and M. Rezazadeh, Mater. Sci. Eng. C 32, 2109 (2012).

    Article  CAS  Google Scholar 

  6. C. Zhang, Y. Yan, Q. Pan, et al., Dalton Trans. 44, 13340 (2015).

    Article  CAS  PubMed  Google Scholar 

  7. S. James, B. Chishti, S. A. Ansari, et al., J. Electron. Mater. 47, 7505 (2018).

    Article  CAS  Google Scholar 

  8. Y. Z. Song, X. J. Pang, J. Chen, et al., Int. J. Environ. Anal. Chem. 100, 957 (2020).

    Article  CAS  Google Scholar 

  9. M. Mohseni Kafshgari and H. Tahermansouri, Colloids Surf., B 160, 671 (2017).

    Article  CAS  Google Scholar 

  10. J. Huang, L. Wang, C. Shi, et al., Sens. Actuators, B 196, 567 (2014).

    Article  CAS  Google Scholar 

  11. K. Giribabu, S. Y. Oh, R. Suresh, et al., Microchim. Acta 183, 2421 (2016).

    Article  CAS  Google Scholar 

  12. M. Bagheri, M. Y. Masoomi, A. Morsali, et al., ACS Appl. Mater. Interfaces 8, 21472 (2016).

    Article  CAS  PubMed  Google Scholar 

  13. M. R. Jalali Sarvestani, and Z. Doroudi, J. Water Environ. Nanotechnol. 5, 180 (2020).

    Google Scholar 

  14. R. Khakpour and H. Tahermansouri, Int. J. Biol. Macromol. 109, 598 (2018).

    Article  CAS  PubMed  Google Scholar 

  15. H. Uslu and G. Demir, J. Chem. Eng. Data 55, 3290 (2010).

    Article  CAS  Google Scholar 

  16. H. Sepehrian, J. Fasihi, and M. Khayatzadeh Mahani, Ind. Eng. Chem. Fundam. 48, 6772 (2009).

    Article  CAS  Google Scholar 

  17. B. Agarwal, R. Gonzalez-Mendez, M. Lanza, et al., J. Phys. Chem. A 118, 8229 (2014).

    Article  CAS  PubMed  Google Scholar 

  18. P. P. Soufeena, T. A. Nibila, and K. K. Aravindakshan, Spectrochim. Acta, Part A 223, 117201 (2019).

    Article  CAS  Google Scholar 

  19. M. Wang, H. Zhang, L. Guo, et al., Sens. Actuators, B 274, 102 (2018).

    Article  CAS  Google Scholar 

  20. M. Burdel, J. Sandrejova, I. S. Balogh, et al., J. Sep. Sci. 36, 932 (2013).

    Article  CAS  PubMed  Google Scholar 

  21. R. Manikan and B. Kavitha, S. Rani, et al., J. Mex. Chem. Soc. 63, 146 (2019).

    Google Scholar 

  22. M. R. Jalali Sarvestani and R. Ahmadi, Anal. Bioanal. Chem. 5, 273 (2018).

    Google Scholar 

  23. D. Farmanzadeh and L. Tabari, Appl. Surf. Sci. 324, 864 (2015).

    Article  CAS  Google Scholar 

  24. H. R. Rashv and L. Hajiaghababaei, M. R. Darvich, et al., J. Anal. Chem. 75, 1340 (2020).

    Article  Google Scholar 

  25. Y. H. Pang, Y. Y. Huang, L. Wang, et al., Environ. Pollut. 263, 114616 (2020).

    Article  CAS  Google Scholar 

  26. R. Ahmadi and M. R. Jalali Sarvestani, Russ. J. Phys. Chem. B 14, 198 (2020).

    Article  CAS  Google Scholar 

  27. L. Mahdavian, Russ. J. Appl. Chem. 89, 1528 (2016).

    Article  CAS  Google Scholar 

  28. J. Beheshtian, M. Kamfiroozi, Z. Bagheri, et al., Chin. J. Chem. 25, 60 (2012).

    Article  CAS  Google Scholar 

  29. S. Hussain, R. Hussain, M. Y. Mehboob, et al., ACS Omega 5, 7641 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. S. Larki, E. Shakerzadeh, E. C. Anota, et al., Chem. Phys. 526, 110424 (2019).

    Article  CAS  Google Scholar 

  31. H. Zhu, C. Zhao, Q. Cai, et al., Inorg. Chem. Commun. 114, 107808 (2020).

    Article  CAS  Google Scholar 

  32. M. R. Jalali Sarvestani and Z. Doroudi, Adv. J. Chem. A 3, 740 (2020).

    Google Scholar 

  33. M. R. Jalali Sarvestani and R. Ahmadi, J. Water Environ. Nanotechnol. 5, 34 (2020).

    Google Scholar 

  34. R. Ahmadi and M. Ebrahimikia, Phys. Chem. Res. 5, 617 (2017).

    CAS  Google Scholar 

  35. M. R. Jalali Sarvestani and R. Ahmadi, Chem. Methodol. 4, 40 (2020).

    Article  Google Scholar 

  36. R. A. Sakovich, A. Y. Shaulov, E. M. Nechvolodova, and L. A. Tkachenko, Russ. J. Phys. Chem. B 14, 516 (2020).

    Article  CAS  Google Scholar 

  37. H. C. Du, R. Pan, X. Dong, and W. Huan, Russ. J. Phys. Chem. B 14, 905 (2020).

    Article  Google Scholar 

  38. M. A. Ashraf, Z. Liu, and M. Najafi, Russ. J. Phys. Chem. B 14, 217 (2020).

    Article  CAS  Google Scholar 

  39. F. K. Fotooh and M. Atashparvar, Russ. J. Phys. Chem. B 13, 1 (2019).

    Article  CAS  Google Scholar 

  40. Nanotube. Modeler. J. Crystal. Soft. 2014 software.

  41. R. Dennington, T. A. Keith, and J. M. Millam, GaussView, Version 6 (Semichem Inc., Shawnee Mission, KS, 2016).

    Google Scholar 

  42. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, et al., Gaussian 16, Revision C.01 (Gaussian Inc., Wallingford, CT, 2016).

    Google Scholar 

  43. N. M. O’Boyle, A. L. Tenderholt, and K. M. Langner, J. Comp. Chem. 29, 839 (2008).

    Article  CAS  Google Scholar 

  44. J. Tomasi, B. Mennucci, and E. Cances, J. Mol. Struct.: THEOCHEM 464, 5 (1999).

    Article  Google Scholar 

  45. K. E. Riley, J. Vondrasek, and P. Hobza, J. Phys. Chem. Chem. Phys. 9, 41 (2007).

    Article  CAS  Google Scholar 

  46. A. Klamt, B. Mennucci, J. Tomasi, et al., Acc. Chem. Res. 42, 4 (2009).

    Article  CAS  Google Scholar 

  47. W. Sang-Aroon and V. Ruangpornvisuti, Int. J. Quantum Chem. 108, 1181 (2008).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors appreciate research council of Islamic Azad University of Yadegar-e-Imam Khomeini (RAH) Shahre-rey branch for supporting this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Doroudi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jalali Sarvestani, M.R., Doroudi, Z. & Ahmadi, R. Picric Acid Adsorption on the Surface of Pristine and Al-doped Boron Nitride Nanocluster: a Comprehensive Theoretical Study. Russ. J. Phys. Chem. B 16, 185–196 (2022). https://doi.org/10.1134/S1990793122010286

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793122010286

Keywords:

Navigation