Skip to main content
Log in

Thermodynamic and Transport Properties of Supercritical Fluids. Part 2: Review of Transport Properties

  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

The experimental foundations and some aspects of the theory and modeling of transport properties (thermal conductivity, viscosity, heat-transfer coefficient) of fluids in the critical and supercritical regions are considered. The theoretical and experimental information on the critical anomaly of thermal conductivity is analyzed in detail. A brief historical reference is given to the first experiments on the thermal conductivity in the critical region, which were carried out mainly by Soviet researchers. The features of measuring the thermal conductivity in the critical region and various interpretations of its critical anomalies are considered. Various approaches to describe the critical anomaly of the transport properties of supercritical fluids, primarily the crossover approach, are discussed. It is shown that the critical anomalies of thermal conductivity, which are described using the mode coupling theory of dynamic critical phenomena, can be represented by a simplified model with two critical amplitudes and one cutoff parameter \({{\bar {q}}_{{\text{D}}}}\) (the boundary value of the wavenumber), which is characteristic of a particular fluid. A procedure to determine these specific parameters is developed based on the principle of corresponding states. This makes it possible to develop a universal method for describing the critical anomalies of transport properties of supercritical fluids. In a pulse experiment, conditions were found under which anomalies of properties do not manifest themselves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.

Similar content being viewed by others

Notes

  1. The state of the art of studies of the heat transfer under forced convection of a heat-transfer medium at supercritical pressures was analyzed by Kurganov et al. [13].

REFERENCES

  1. M. A. Anisimov, Critical Phenomena in Liquid Crystals (Nauka, Moscow, 1987) [in Russian].

    Google Scholar 

  2. V. P. Skripov, Metastable Liquid (Nauka, Moscow, 1972) [in Russian].

    Google Scholar 

  3. A. Michels and J. V. Sengers, Physica (Amsterdam, Neth.) 28, 1238 (1962).

  4. A. Michels, J. V. Sengers, and P. S. van der Gulik, Physica (Amsterdam, Neth.) 28, 1201 (1962).

  5. A. Michels, J. V. Sengers, and P. S. van der Gulik, Physica (Amsterdam, Neth.) 28, 1216 (1962).

  6. V. I. Polezhaev and E. B. Soboleva, Priroda, No. 10, 17 (2003).

  7. A. V. Zyuzgin, A. I. Ivanov, V. I. Polezhaev, G. F. Putin, and E. B. Soboleva, Cosmic Res. 39, 175 (2001).

    Article  CAS  Google Scholar 

  8. J. V. Sengers, in Proceedings of the Conference on Phenomena in the Neighborhood of Critical Points, Ed. by M. S. Green and J. V. Sengers (NBS Misc, Washington, DC, 1966), p. 165.

  9. A. M. Sirota, V. I. Latunin, and G. M. Belyaeva, Teploenergetika, No. 8, 6 (1973).

  10. V. P. Skripov, Critical Phenomena and Fluctuations in Solutions, Ed. by M. I. Shakhparonov (Akad. Nauk, Moscow, 1960) [in Russian].

    Google Scholar 

  11. V. Vesovic, W. A. Wakeham, G. A. Olchowy, J. V. Sengers, J. T. R. Watson, and J. Millat, J. Phys. Chem. Ref. Data 19, 763 (1990).

    Article  CAS  Google Scholar 

  12. W. Wagner and A. Pruß, J. Phys. Chem. Ref. Data 31, 387 (2002).

    Article  CAS  Google Scholar 

  13. V. A. Kurganov, Yu. A. Zeigarnik, G. G. Yan’kov, and I. V. Maslakova, Heat Transfer and Resistance in Pipes at Supercritical Coolant Pressures. Research Findings and Practical Recommendations (OIVT RAN, Moscow, 2018) [in Russian].

    Google Scholar 

  14. Kh. I. Amirkhanov and A. P. Adamov, Teploenergetika, No. 7, 77 (1963).

    Google Scholar 

  15. Kh. I. Amirkhanov and A. P. Adamov, Teploenergetika, No. 10, 69 (1963).

    CAS  Google Scholar 

  16. A. M. Sirota, V. I. Latunin, and N. E. Nikolaeva, Teploenergetika, No. 4, 72 (1981).

  17. A. M. Sirota, V. I. Latunin, and G. M. Belyaeva, Teploenergetika, No. 5, 70 (1976).

  18. I. F. Golubev and V. P. Sokolova, Teploenergetika, No. 11, 64 (1964).

  19. R. Tufeu, D. Y. Ivanov, Y. Garrabos, and B. le Neindre, Ber. Bunsen-Ges. Phys. Chem. 88, 422 (1984).

    Article  CAS  Google Scholar 

  20. D. Yu. Ivanov, Critical Behavior of Non-Idealized Systems (Fizmatlit, Moscow, 2003) [in Russian].

    Google Scholar 

  21. V. P. Skripov and P. I. Potashev, Inzh.-Fiz. Zh. 5 (2), 30 (1962).

    CAS  Google Scholar 

  22. E. N. Dubrovina and V. P. Skripov, Zh. Prikl. Mekh. Tekh. Fiz., No. 1, 115 (1965).

  23. E. N. Dubrovina and V. P. Skripov, Zh. Prikl. Mekh. Tekh. Fiz., No. 5, 152 (1969).

  24. E. N. Dubrovina, V. P. Skripov, and N. A. Shuravenko, Teplofiz. Vys. Temp. 7, 730 (1969).

    CAS  Google Scholar 

  25. R. Mostert, H. R. van den Berg, P. S. van der Gulik, and J. V. Sengers, J. Chem. Phys. 92, 5454 (1990).

    Article  CAS  Google Scholar 

  26. R. A. Perkins, J. Chem. Eng. Data 47, 1272 (2002).

    Article  CAS  Google Scholar 

  27. A. M. Sirota, in Experimental Thermodynamics. III. The Measurement of Transport Properties of Fluids, Ed. by W. A. Wakeham, A. Nagashima, and J. V. Sengers (Blackwell Scientific, Oxford, 1991), p. 142.

    Google Scholar 

  28. G. A. Olchowy and J. V. Sengers, Phys. Rev. Lett. 61, 15 (1988).

    Article  CAS  PubMed  Google Scholar 

  29. G. A. Olchowy and J. V. Sengers, Int. J. Thermophys. 10, 417 (1989).

    Article  CAS  Google Scholar 

  30. K. Kawasaki, Ann. Phys. (N.Y.) 61, 1 (1970).

    Article  CAS  Google Scholar 

  31. K. Kawasaki, Phase Transitions and Critical Phenomena, Ed. by C. Domb and M. S. Green (Academic, New York, 1976), Vol. 5a.

  32. P. C. Hohenberg and B. I. Halperin, Rev. Mod. Phys. 49, 435 (1977).

    Article  CAS  Google Scholar 

  33. V. Privman, P. C. Hohenberg, and A. Ahorony, in Phase Transitions and Critical Phenomena, Ed. by C. Domb and M. S. Green (Academic, New York, 1991), Vol. 14, p. 1.

    Google Scholar 

  34. J. V. Sengers, Int. J. Thermophys. 6, 203 (1985).

    Article  CAS  Google Scholar 

  35. M. Frenkel, R. Chirico, V. Diky, C. D. Muzny, A. F. Kazakov, J. W. Magee, I. M. Abdulagatov, and J. W. Kang, NIST Thermo Data Engine, NIST Standard Reference Database 103b: Pure Compound, Binary Mixtures, and Chemical Reactions, Vers. 5.0 (Natl. Inst. Standards Technol., Boulder, CO, 2010).

    Google Scholar 

  36. M. L. Huber, E. A. Sykioti, M. J. Assael, and R. A. Perkins, J. Phys. Chem. Ref. Data 45, 013102 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  37. E. W. Lemmon, M. L. Huber, and M. O. McLinden, NIST Standard Reference Database 23, NIST Refe-rence Fluid Thermodynamic and Transport Properties, REFPROP, Version 10.1 (Natl. Inst. Standards Technol., Gaithersburg, MD, 2018).

    Google Scholar 

  38. J. M. H. Levelt Sengers, in Supercritical Fluids. Fundamentals and Applications, Ed. by E. Kiran and J. M. H. Levelt Sengers (Kluwer, Dordrecht, 1994).

    Google Scholar 

  39. M. L. Huber, R. A. Perkins, D. G. Friend, J. V. Sengers, M. J. Assael, I. N. Metaxa, K. Miyagawa, R. Hellmann, and E. Vogel, J. Phys. Chem. Ref. Data 41, 033102 (2012).

    Article  Google Scholar 

  40. F. M. Gumerov, Supercritical Fluid Technologies. Economic Expediency (AN RT, Kazan’, 2019) [in Russian].

  41. R. A. Perkins, H. M. Roder, D. G. Friend, and C. A. Nieto de Castro, Phys. A (Amsterdam, Neth.) 173, 332 (1991).

  42. J. Luettmer-Strathmann, J. V. Sengers, and G. A. Olchowy, J. Chem. Phys. 103, 7482 (1995).

    Article  CAS  Google Scholar 

  43. S. B. Kiselev and V. D. Kulikov, Int. J. Thermophys. 15, 283 (1994).

    Article  CAS  Google Scholar 

  44. S. B. Kiselev and V. D. Kulikov, Int. J. Thermophys. 18, 1143 (1997).

    Article  CAS  Google Scholar 

  45. S. B. Kiselev and M. L. Huber, Fluid Phase Equilib. 142, 253 (1998).

    Article  CAS  Google Scholar 

  46. R. Folk and G. Moser, Phys. Rev. Lett. 75, 2706 (1995).

    Article  CAS  PubMed  Google Scholar 

  47. R. A. Perkins, J. V. Sengers, I. M. Abdulagatov, and M. L. Huber, Int. J. Thermophys. 34, 191 (2013).

    Article  CAS  Google Scholar 

  48. J. V. Sengers, R. A. Perkins, M. L. Huber, and D. G. Friend, Int. J. Thermophys. 30, 374 (2009).

    Article  CAS  Google Scholar 

  49. A. Laesecke and C. D. Muzny, J. Phys. Chem. Ref. Data 46, 013107 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  50. H. C. Burstyn, J. V. Sengers, J. K. Bhattacharjee, and R. A. Ferrell, Phys. Rev. A 28, 1567 (1983).

    Article  CAS  Google Scholar 

  51. G. Paladin and L. Peliti, J. Phys. Lett. (Paris) 43, 15 (1982).

    Article  Google Scholar 

  52. G. Paladin and L. J. Peliti, J. Phys. Lett. (Paris) 45, 289 (1984).

    Article  Google Scholar 

  53. J. K. Bhattacharjee, R. A. Ferrell, R. S. Basu, and J. V. Sengers, Phys. Rev. A 24, 1469 (1981).

    Article  CAS  Google Scholar 

  54. H. Hao, R. A. Ferrell, and J. K. Bhattacharjee, Phys. Rev. E 71, 021201 (2005).

    Article  Google Scholar 

  55. R. F. Berg, M. R. Moldover, and G. A. Zimmerli, Phys. Rev. E 60, 4079 (1999).

    Article  CAS  Google Scholar 

  56. R. A. Ferrell, Phys. Rev. Lett. 24, 1169 (1970).

    Article  CAS  Google Scholar 

  57. I. M. Abdulagatov and P. V. Skripov, Russian Journal of Physical Chemistry B, 14 (7), 1178 (2020).

  58. R. Tufeu and B. le Neindre, Int. J. Thermophys. 8, 283 (1987).

    Article  CAS  Google Scholar 

  59. J. C. Nieuwoudt, B. le Neindre, R. Tufeu, and J. V. Sengers, J. Chem. Eng. Data 32, 1 (1987).

    Article  CAS  Google Scholar 

  60. P. M. Mathias, V. S. Parekh, and E. J. Miller, Ind. Eng. Chem. Res. 41, 989 (2002).

    Article  CAS  Google Scholar 

  61. F. Nicoll and P. C. Albright, Phys. Rev. B 31, 4576 (1985).

    Article  CAS  Google Scholar 

  62. C. Bervillier, Phys. Rev. B 34, 8141 (1986).

    Article  CAS  Google Scholar 

  63. H. Behnejad, J. V. Sengers, and M. A. Anisimov, in Applied Thermodynamics of Fluids, Ed. by A. R. H. Goodwin, J. V. Sengers, and C. J. Peters (IUPAC, 2010), Chap. 10, p. 321.

    Google Scholar 

  64. C. Bagnuls and C. Bervilliev, Phys. Rev. B 32, 7209 (1985).

    Article  CAS  Google Scholar 

  65. M. E. Fisher, J. Math. Phys. 5, 944 (1964).

    Article  Google Scholar 

  66. D. Yu. Ivanov, L. A. Makarevich, and O. N. Sokolova, JETP Lett. 20, 121 (1974).

    Google Scholar 

  67. D. Yu. Ivanov, Critical Behavior of Nonideal Systems (Wiley-VCH, Weinheim, 2008).

    Book  Google Scholar 

  68. R. Tufeu, A. Letaief, Y. Garrabos, and B. le Neindre, in Proceedings of the 8th Symposium on Thermal Properties, Ed. by J. V. Sengers (ASME, New York, 1982), p. 451.

  69. N. B. Vargaftik, L. P. Filippov, A. A. Tarzimanov, and E. E. Totskii, Handbook of Thermal Conductivity of Gases and Liquids (Energoatomizdat, Moscow, 1990; CRC, Boca Raton, 1994).

  70. B. le Neindre and R. Tufeu, Measurement of the Transport Properties of Fluids. Experimental Thermodynamics, Ed. by W. A. Wakeham, A. Nagashima, and J. V. Sengers (Blackwell Scientific, Oxford, 1991), Vol. 3, p. 111.

    Google Scholar 

  71. D. Yu. Ivanov, Vestn. SIbGUTI, No. 3, 94 (2009).

    Google Scholar 

  72. B. le Neindre, R. Tufeu, P. Bury, and J. V. Sengers, Ber. Bunsen-Ges. Phys. Chem. 77, 262 (1973).

    Google Scholar 

  73. B. le Neindre, Y. Garrabos, F. Gumerov, and A. Sabirzianov, J. Chem. Eng. Data 54, 2678 (2009).

    Article  CAS  Google Scholar 

  74. B. le Neindre, G. Lombardi, P. Desmarest, M. Kayser, T. R. Bilalov, F. M. Gumerov, and Y. Garrabos, Fluid Phase Equilib. 481, 66 (2019).

    Article  CAS  Google Scholar 

  75. Department of Theoretical Foundations of Heat Engineering (1934–2004), Ed. by D. G. Amirkhanov and L. G. Shevchuk (Idel-Press, Kazan’, 2004) [in Russian].

  76. J. M. H. Levelt Sengers, in Supercritical Fluids: Fundamentals for Application, NATO ASI, Ed. by E. Kiran and J. M. H. Levelt Sengers (Kluwer, Dordrecht, Netherlands, 2000), p. 3.

    Google Scholar 

  77. L. P. Filippov, Prib. Tekh. Eksp., No. 3, 86 (1957).

  78. P. V. Skripov and A. P. Skripov, Int. J. Thermophys. 31, 816 (2010).

    Article  CAS  Google Scholar 

  79. E. D. Nikitin, High Temp. 36, 305 (1998).

    CAS  Google Scholar 

  80. A. A. Igolnikov, S. B. Rutin, and P. V. Skripov, AIP Conf. Proc. 2174, 020104 (2019).

    Article  Google Scholar 

  81. S. B. Ryutin and P. V. Skripov, Russ. J. Phys. Chem. B 7, 943 (2013).

    Article  CAS  Google Scholar 

  82. S. B. Rutin, A. D. Yampol’skii, and P. V. Skripov, High Temp. 52, 465 (2014).

    Article  CAS  Google Scholar 

  83. S. B. Rutin, A. D. Yampol’skiy, and P. V. Skripov, in Advanced Applications of Supercritical Fluids in Energy Systems, Ed. by L. Chen and Y. Iwamoto (IGIGlobal, Hershey, PA, 2017), p. 271.

    Google Scholar 

  84. E. N. Dubrovina, Cand. Sci. (Phys. Math.) Dissertation (Kirov Ural Polytech. Inst., Sverdlovsk, 1971).

  85. I. G. Gerts and L. P. Filippov, Zh. Fiz. Khim. 30, 2424 (1956).

    CAS  Google Scholar 

  86. V. P. Skripov and V. K. Semenchenko, Zh. Fiz. Khim. 29, 174 (1955).

    CAS  Google Scholar 

  87. E. B. Soboleva, Russ. J. Phys. Chem. B 8, 1009 (2014).

    Article  CAS  Google Scholar 

  88. P. V. Skripov and S. B. Rutin, Interfacial Phenom. Heat Transf. 5, 187 (2017).

    Article  Google Scholar 

  89. S. B. Rutin, D. V. Volosnikov, and P. V. Skripov, Int. J. Heat Mass Transfer 91, 1 (2015).

    Article  CAS  Google Scholar 

  90. S. B. Rutin and P. V. Skripov, in Proceedings of the 14th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics (HEFAT'2019), Ed. by J. Meyer (Wicklow, Ireland, 2019), p. 773.

  91. S. B. Rutin, A. A. Igolnikov, and P. V. Skripov, J. Eng. Thermophys. 29, 67 (2020).

    Article  Google Scholar 

  92. S. B. Rutin and P. V. Skripov, J. Eng. Thermophys. 25, 166 (2016).

    Article  CAS  Google Scholar 

  93. S. B. Rutin and P. V. Skripov, Thermochim. Acta 562, 70 (2013).

    Article  CAS  Google Scholar 

  94. L. P. Filippov and S. N. Kravchun, Zh. Fiz. Khim. 56, 2753 (1982).

    CAS  Google Scholar 

  95. A. V. Baginsky, D. V. Volosnikov, P. V. Skripov, and A. A. Smotritskii, Thermophys. Aeromech. 15, 373 (2008).

    Article  Google Scholar 

  96. S. B. Rutin and P. V. Skripov, Int. J. Thermophys. 37 (9), 102 (2016).

    Article  Google Scholar 

  97. D. V. Volosnikov, I. I. Povolotskiy, A. A. Igolnikov, and D. A. Galkin, J. Phys.: Conf. Ser. 1105, 012153 (2018).

    Google Scholar 

  98. P. Warrier, Y. Yuan, M. P. Beck, and A. S. Teja, AIChE J. 56, 3243 (2010).

    Article  CAS  Google Scholar 

  99. Yu. E. Gorbatyi and G. V. Bondarenko, Sverkhkrit. Flyuidy: Teor. Prakt. 2 (2), 5 (2007).

    Google Scholar 

  100. Y. E. Gorbaty and G. V. Bondarenko, J. Supercrit. Fluids 14, 1 (1998).

    Article  CAS  Google Scholar 

  101. V. K. Semenchenko, in Application of Ultrasound to the Study of Matter (MOPI, Moscow, 1956), No. 3, p. 51 [in Russian].

  102. V. K. Semenchenko, Zh. Fiz. Khim. 21, 1461 (1947).

    CAS  Google Scholar 

  103. Ya. B. Zel’dovich, Sov. Phys. JETP 53, 1101 (1981).

    Google Scholar 

  104. Al. A. Borisov, A. A. Borisov, S. S. Kutateladze, and V. E. Nakoryakov, JETP Lett. 31, 585 (1980).

  105. V. V. Brazhkin, A. G. Lyapin, V. N. Ryzhov, K. Trachenko, Yu. D. Fomin, and E. N. Tsiok, Phys. Usp. 55, 1061 (2012).

    Article  CAS  Google Scholar 

  106. H. Wang, L. K. H. Leung, W. Wang, and Q. Bi, Appl. Therm. Eng. 142, 573 (2018).

    Article  Google Scholar 

  107. M. E. Shitsman, Teplofiz. Vys. Temp. 1, 267 (1963).

    Google Scholar 

  108. N. N. Veryasova, A. E. Lazhko, D. E. Isaev, E. A. Grebenik, and P. S. Timashev, Russ. J. Phys. Chem. B 13, 1079 (2019).

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the Russian Foundation for Basic Research (project no. 19-18-50052 Ekspansiya).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. M. Abdulagatov.

Additional information

Translated by V. Glyanchenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdulagatov, I.M., Skripov, P.V. Thermodynamic and Transport Properties of Supercritical Fluids. Part 2: Review of Transport Properties. Russ. J. Phys. Chem. B 15, 1171–1188 (2021). https://doi.org/10.1134/S1990793121070022

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793121070022

Keywords:

Navigation