Skip to main content
Log in

Simulation of the diffusion of atoms in a dense adsorbed layer with a hexagonal structure

  • Dynamics of Transport Processes
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

Molecular dynamics methods are used to study the kinetics of the migration of impurity atoms due to the diffusion of vacancies on a honeycomb-type lattice. A particular attention is paid to examining how the impurity diffusion coefficient depends on the coverage of vacancies ϑv. It is shown that, in the limit of vanishingly small concentration of vacancies, ϑv ≪ 1, this dependence is linear, with the simulation results being consistent with the predictions of our analytical theory. With increasing ϑv, the diffusion coefficient begins to grow nonlinearly, correlating with the increase in the size of the percolation clusters. Above the percolation threshold, the impurity diffusion coefficient tends rapidly to its value for a surface without obstacles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Flores, S. Junghans, and M. Wutting, Surf. Sci. 371, 14 (1997).

    Article  CAS  Google Scholar 

  2. A. K. Schmid, J. C. Hamilton, N. C. Bartelt, et al., Phys. Rev. Lett. 77, 2977 (1996).

    Article  CAS  Google Scholar 

  3. R. van Gastel, E. Somfai, S. B. van Albada, et al., Phys. Rev. Lett. 86, 1562 (2001).

    Article  Google Scholar 

  4. M. L. Grant, B. S. Swartzentruber, N. C. Bartelt, et al., Phys. Rev. Lett. 86, 4588 (2001).

    Article  CAS  Google Scholar 

  5. M. L. Anderson, N. C. Bartelt, and B. S. Swartzentruber, Surf. Sci. 538, 53 (2003).

    Article  CAS  Google Scholar 

  6. M. L. Anderson, M. J. D’Amato, P. J. Feibelman, et al., Phys. Rev. Lett. 90, 126102 (2003).

    Article  CAS  Google Scholar 

  7. R. van Gastel, R. van Moere, H. J. W. Zandvliet, et al., Surf. Sci. 605, 1956 (2011).

    Article  Google Scholar 

  8. M. J. A. Brummelhuis and H. J. Hilhorst, J. Stat. Phys. 53, 249 (1988).

    Article  Google Scholar 

  9. J. B. Hannon, C. Klünker, M. Geisen, et al., Phys. Rev. Lett. 79, 2506 (1997).

    Article  CAS  Google Scholar 

  10. T. J. Newman, Phys. Rev. B 59, 13754 (1999).

    Article  CAS  Google Scholar 

  11. E. Somfai, R. van Gastel, S. B. van Albada, et al., Surf. Sci. 521, 26 (2002).

    Article  CAS  Google Scholar 

  12. Z. Toroszkai, Int. J. Mod. Phys. B 11, 3343 (1998).

    Article  Google Scholar 

  13. O. Bénichou and G. Oshanin, Phys. Rev. E 66, 031101 (2002).

    Article  Google Scholar 

  14. M. J. A. Brummelhuis and H. J. Hilhorst, Physica A 156, 575 (1989).

    Article  Google Scholar 

  15. A. S. Prostnev and B. R. Shub, Russ. J. Phys. Chem. B 5, 525 (2011).

    Article  CAS  Google Scholar 

  16. A. S. Prostnev and B. R. Shub, Russ. J. Phys. Chem. B 6, 65 (2012).

    Article  CAS  Google Scholar 

  17. A. S. Prostnev and B. R. Shub, Russ. J. Phys. Chem. B 10, 547 (2016).

    Article  CAS  Google Scholar 

  18. J. R. Hamming, Phys. Rev. A 136, 1758 (1964).

    Article  Google Scholar 

  19. A. S. Prostnev and B. R. Shub, Russ. J. Phys. Chem. B 7, 568 (2013).

    Article  CAS  Google Scholar 

  20. A. S. Prostnev and B. R. Shub, Russ. J. Phys. Chem. B 8, 420 (2014).

    Article  CAS  Google Scholar 

  21. D. T. Gillespie, J. Comput. Phys. 22, 403 (1976).

    Article  CAS  Google Scholar 

  22. P. Hanusse and A. Blanché, J. Chem. Phys. 74, 6148 (1981).

    Article  CAS  Google Scholar 

  23. W. Koh and K. T. Blackwell, J. Chem. Phys. 134, 154103 (2011).

    Article  Google Scholar 

  24. I. M. Sokolov, Sov. Phys. Usp. 29, 924 (1986).

    Article  Google Scholar 

  25. D. Stauffer and A. Aharone, Introduction to Percolation Theory (Taylor and Francis, London, 1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Prostnev.

Additional information

Original Russian Text © A.S. Prostnev, B.R. Shub, 2016, published in Khimicheskaya Fizika, 2016, Vol. 35, No. 11, pp. 75–80.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prostnev, A.S., Shub, B.R. Simulation of the diffusion of atoms in a dense adsorbed layer with a hexagonal structure. Russ. J. Phys. Chem. B 10, 1022–1026 (2016). https://doi.org/10.1134/S1990793116060087

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793116060087

Keywords

Navigation