Skip to main content
Log in

Vascular Component of Neuroinflammation in Experimental Alzheimer’s Disease in Mice

  • Published:
Cell and Tissue Biology Aims and scope Submit manuscript

Abstract

New RAGE- and CD147-mediated mechanisms of damage to the hippocampus of mice due to the accumulation of amyloid β (Aβ), the development of local inflammation, metabolic disorders and damage to the blood–brain barrier in two experimental models of Alzheimer’s disease were studied in vivo. The new effects of Aβ in the hippocampal tissue in chronic Alzheimer’s type neurodegeneration, which characterize neuroplasticity disorders, were studied, as were angiogenesis, the structural and functional integrity of the blood–brain barrier, and the development of local neuroinflammation in conjunction with the features of the expression of RAGE and CD147 proteins. Early neurodegenerative changes in the hippocampus associated with the accumulation of Aβ are associated with the intensification of neoangiogenesis and the formation of aberrant intercellular contacts in the endothelial layer of cerebral microvessels in individual hippocampal subregions and the development of local neuroinflammation. As neurodegeneration progresses, neoangiogenesis in the hippocampus is suppressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Agrawal, S.M., Williamson, J., Sharma, R., Kebir, H., Patel, K., Prat, A., and Yong, V.W., Extracellular matrix metalloproteinase inducer shows active perivascular cuffs in multiple sclerosis, Brain, 2013, vol. 6, p. 1760.

    Article  Google Scholar 

  2. Andrade, S., Ramalho, M.J., Pereira, M.D.C., and Loureiro, J.A., Resveratrol brain delivery for neurological disorders prevention and treatment, Front. Pharmacol., 2018, vol. 9, p. 1261.

    Article  CAS  Google Scholar 

  3. Armstrong, R.A., What causes Alzheimer’s disease?, Folia Neuropathol., 2013, vol. 3, p. 169.

    Article  CAS  Google Scholar 

  4. Arvanitakis, Z., Capuano, A.W., Leurgans, S.E., Bennett, D.A., and Schneider, J.A., Relation of cerebral vessel disease to Alzheimer’s disease dementia and cognitive function in elderly people: a cross-sectional study, Lancet Neurol., 2016, vol. 9, p. 934.

    Article  CAS  Google Scholar 

  5. Bao, W., Min, D., Twigg, S.M., Shackel, N.A., Warner, F.J., Yue, D.K., and McLennan, S.V., Monocyte CD147 is induced by advanced glycation end products and high glucose concentration: possible role in diabetic complications, Am. J. Physiol.—Cell Physiol., 2010, vol. 5, p. C1212.

    Article  CAS  Google Scholar 

  6. Biron, K.E., Dickstein, D.L., Gopaul, R., and Jefferies, W.A., Amyloid triggers extensive cerebral angiogenesis causing blood brain barrier permeability and hypervascularity in Alzheimer’s disease, PLoS One, 2011, vol. 8, e23789.

    Article  CAS  Google Scholar 

  7. Carare, R.O., Hawkes, C.A., Jeffrey, M., Kalaria, R.N., and Weller, R.O., Review: cerebral amyloid angiopathy, prion angiopathy, CADASIL and the spectrum of protein elimination failure angiopathies (PEFA) in neurodegenerative disease with a focus on therapy, Neuropathol. Appl. Neurobiol., 2013, vol. 6, p. 593.

    Article  CAS  Google Scholar 

  8. Chen, F., Ghosh, A., Hu, M., Long, Y., Sun, H., Kong, L., Hong, H., and Tang, S., RAGE-NF-κB-PPARγ signaling is involved in AGEs-induced upregulation of amyloid-β influx transport in an in vitro BBB model, Neurotox. Res., 2018, vol. 2, p. 284.

    Article  CAS  Google Scholar 

  9. Deane, R.J., Is RAGE still a therapeutic target for Alzheimer’s disease?, Future Med. Chem., 2012, vol. 7, p. 915.

    Article  CAS  Google Scholar 

  10. Encinas, J.M. and Enikolopov, G., Identifying and quantitating neural stem and progenitor cells in the adult brain, Methods Cell Biol., 2008, vol. 85, p. 243.

    Article  CAS  Google Scholar 

  11. Epelbaum, S., Youssef, I., Lacor, P.N., Chaurand, P., Duplus, E., Brugg, B., Duyckaerts, C., and Delatour, B., Acute amnestic encephalopathy in amyloid-β oligomer–injected mice is due to their widespread diffusion in vivo, Neurobiol. Aging, 2015, vol. 6, p. 2043.

    Article  CAS  Google Scholar 

  12. Erickson, M.A. and Banks, W.A., Blood–brain barrier dysfunction as a cause and consequence of Alzheimer’s disease, J. Cereb. Blood Flow Metab., 2013, vol. 10, p. 1500.

    Article  CAS  Google Scholar 

  13. Festoff, B.W., Sajja, R.K., van Dreden, P., and Cucullo, L., HMGB1 and thrombin mediate the blood-brain barrier dysfunction acting as biomarkers of neuroinflammation and progression to neurodegeneration in Alzheimer’s disease, J. Neuroinflam., 2016, vol. 1, p. 194.

    Article  CAS  Google Scholar 

  14. Fujita, K., Motoki, K., Tagawa, K., Chen, X., Hama, H., Nakajima, K., Homma, H., Tamura, T., Watanabe, H., Katsuno, M., Matsumi, C., Kajikawa, M., Saito, T., Saido, T., Sobue, G., Miyawaki, A., and Okazawa, H., HMGB1, a pathogenic molecule that induces neurite degeneration via TLR4-MARCKS, is a potential therapeutic target for Alzheimer’s disease, Sci. Rep., 2016, vol. 6, p. 31895. https://doi.org/10.1038/srep31895

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Graham, W.V., Bonito-Oliva, A., and Sakmar, T.P., Update on Alzheimer’s disease therapy and prevention strategies, Ann. Rev. Med., 2017, vol. 1, p. 413.

    Article  CAS  Google Scholar 

  16. Grammas, P., Neurovascular dysfunction, inflammation and endothelial activation: Implications for the pathogenesis of Alzheimer’s disease, J. Neuroinflam., 2011, vol. 8, p. 26. https://doi.org/10.1186/1742-2094-8-26

    Article  CAS  Google Scholar 

  17. van de Haar, H.J., Jansen, J.F.A., van Osch, M.J.P., van Buchem, M.A., Muller, M., Wong, S.M., Hofman, P.A.M., Burgmans, S., Verhey, F.R.J., and Backes, W.H., Neurovascular unit impairment in early Alzheimer’s disease measured with magnetic resonance imaging, Neurobiol. Aging, 2016, vol. 45, p. 190.

    Article  Google Scholar 

  18. Iturria-Medina, Y., Sotero, R.C., Toussaint, P.J., Mateos-Pérez, J.M., and Evans, A.C., Early role of vascular dysregulation on late-onset Alzheimer’s disease based on multifactorial data-driven analysis, Nat. Commun., 2016, vol. 21, p. 11934. https://doi.org/10.1038/ncomms11934

    Article  CAS  Google Scholar 

  19. Kanyenda, L.J., Verdile, G., Martins, R., Meloni, B.P., Chieng, J., Mastaglia, F., Laws, S.M., Anderton, R.S., and Boulos, S., Is cholesterol and amyloid-β stress induced CD147 expression a protective response? Evidence that extracellular cyclophilin a mediated neuroprotection is reliant on CD147, J. Alzheimer’s Dis., 2014, vol. 3, p. 545.

    Article  CAS  Google Scholar 

  20. Keable, A., Fenna, K., Yuen, H.M., Johnston, D.A., Smyth, N.R., Smith, C., Rustam, Al-Shahi, Salman, Samarasekera, N., James, N.A.R., Attems, J., Kalaria, R.N., Wellera, R.O., and Carare, R.O., Deposition of amyloid β in the walls of human leptomeningeal arteries in relation to perivascular drainage pathways in cerebral amyloid angiopathy, Biochim. Biophys. Acta, 2016, vol. 5, p. 1037.

    Article  CAS  Google Scholar 

  21. Kierdorf, K. and Fritz, G., RAGE regulation and signaling in inflammation and beyond, J. Leukocyte Biol., 2013, vol. 1, p. 55.

    Article  CAS  Google Scholar 

  22. Kim, I.D., Lee, H., Kim, S.W., Lee, H.K., Choi, J., Han, P.L., and Lee, J.K., Alarmin HMGB1 induces systemic and brain inflammatory exacerbation in post-stroke infection rat model, Cell Death Dis., 2018, vol. 4, p. 426.

    Article  CAS  Google Scholar 

  23. Liu, X., Hou, D., Lin, F., Luo, J., Xie, J., Wang, Y., and Tian, Y., The role of neurovascular unit damage in the occurrence and development of Alzheimer’s disease, Rev. Neurosci., 2018. https://doi.org/10.1515/revneuro-2018-0056

  24. Magaki, S., Tang, Z., Tung, S., Williams, C.K., Lo, D., Yong, W.H., Khanlou, N., and Vinters, H.V., The effects of cerebral amyloid angiopathy on integrity of the blood-brain barrier, Neurobiol. Aging, 2018, vol. 70, p. 70.

    Article  Google Scholar 

  25. Meneghini, V., Bortolotto, V., Francese, M.T., Dellarole, A., Carraro, L., Terzieva, S., and Grilli, M., High-mobility group box-1 protein and β-amyloid oligomers promote neuronal differentiation of adult hippocampal neural progenitors via receptor for advanced glycation end products/nuclear factor-kb axis: relevance for Alzheimer’s disease, J. Neurosci., 2013, vol. 14, p. 6047.

    Article  CAS  Google Scholar 

  26. Miedel, C.J., Patton, J.M., Miedel, A.N., Miedel, E.S., and Levenson, J.M., Assessment of spontaneous alternation, novel object recognition and limb clasping in transgenic mouse models of amyloid-β and tau neuropathology, J. Vis. Exp., 2017, vol. 123. https://doi.org/10.3791/55523

  27. Miller, M.C., Tavares, R., Johanson, C.E., Hovanesian, V., Donahue, J.E., Gonzalez, L., Silverberg, G.D., and Stopa, E.G., Hippocampal RAGE immunoreactivity in early and advanced Alzheimer’s disease, Brain Res., 2008, vol. 1230, p. 273.

    Article  CAS  Google Scholar 

  28. Muramatsu, T., Basigin (CD147), a multifunctional transmembrane glycoprotein with various binding partners, J. Biochem., 2016, vol. 5, p. 481.

    Article  CAS  Google Scholar 

  29. Paudel, Y.N., Shaikh, M.F., Chakraborti, A., Kumari, Y., Aledo-Serrano, Á., Aleksovska, K., Alvim, M.K.M., and Othman, I., HMGB1: a common biomarker and potential target for TBI, neuroinflammation, epilepsy, and cognitive dysfunction, Front. Neurosci., 2018, vol. 12, p. 628.

    Article  Google Scholar 

  30. Ramasamy, R., Shekhtman, A., and Schmidt, A.M., The multiple faces of RAGE–opportunities for therapeutic intervention in aging and chronic disease, Expert Opin. Ther. Targets, 2016, vol. 4, p. 431.

    Article  CAS  Google Scholar 

  31. Reich, D., Gallucci, G., Tong, M., and de la Monte, S.M., Therapeutic advantages of dual targeting of PPAR-δ and PPAR-γ in an experimental model of sporadic Alzheimer’s disease, J. Parkinson’s Dis. Alzheimer’s Dis., 2018, vol. 1, p. 1.

    Google Scholar 

  32. Saito, S. and Ihara, M., Interaction between cerebrovascular disease and Alzheimer pathology, Curr. Opin. Psychiatry, 2016, vol. 2, p. 168.

    Article  Google Scholar 

  33. Salmina, A.B., Pozhilenkova, E.A., Morgun, A.V., Kuvacheva, N.V., Shuvaev, A.N., Lopatina, O.L., Boitsova, E.B., and Taranushenko, T.E., Glial dysfunction and blood-brain barrier impairment in the developing brain, Adv. Neuroimmune Biol., 2016, vol. 2, p. 69.

    Article  Google Scholar 

  34. Seizer, P., Gawaz, M., and May, A.E., Cyclophilin A and EMMPRIN (CD147) in cardiovascular diseases, Cardiovasc. Res., 2014, vol. 1, p. 17.

    Article  CAS  Google Scholar 

  35. Sipos, E., Kurunczi, A., Kasza, A., Horváth, J., Felszeghy, K., Laroche, S., Toldi, J., Párducz, A., Penke, B., and Penke, Z., Beta-amyloid pathology in the entorhinal cortex of rats induces memory deficits: implications for Alzheimer’s disease, Neuroscience, 2007, vol. 1, p. 28.

    Article  CAS  Google Scholar 

  36. Steinberg, M., Hess, K., Corcoran, C., Mielke, M.M., Norton, M., Breitner, J., Green, R., Leoutsakos, J., Welsh-Bohmer, K., Lyketsos, C., and Tschanz, J., Vascular risk factors and neuropsychiatric symptoms in Alzheimer’s disease: the cache county study, Int. J. Geriatric Psychiatry, 2014, vol. 2, p. 153.

    Article  Google Scholar 

  37. Ungern-Sternberg, S.N.I., von, Zernecke, A., and Seizer, P., Extracellular matrix metalloproteinase inducer EMMPRIN (CD147) in cardiovascular disease, Int. J. Mol. Sci., 2018, vol. 19. pii: E507. https://doi.org/10.3390/ijms19020507

    Article  CAS  Google Scholar 

  38. Uspenskaya, Yu.A., Komleva, Yu.K., Gorina, Ya.V., Pozhilenkova, E.A., Belova, O.A., and Salmina, A.B., Multifunctionality of CD147 and new opportunities for diagnosis and therapy, Sib. Med. Obozr., 2018, vol. 4, p. 22.

    Google Scholar 

  39. Vetrivel, K.S., Zhang, X., Meckler, X., Cheng, H., Lee, S., Gong, P., Lopes, K.O., Chen, Y., Iwata, N., Yin, K.J., Lee, J.M., Parent, A.T., Saido, T.C., Li, Y.M., Sisodia, S.S., and Thinakaran, G., Evidence that CD147 modulation of beta-amyloid (Abeta) levels is mediated by extracellular degradation of secreted Abeta, J. Biol. Chem., 2008, vol. 28, p. 19489.

    Article  CAS  Google Scholar 

  40. Weber, D.J., Allette, Y.M., Wilkes, D.S., and White, F.A., The HMGB1-RAGE inflammatory pathway: implications for brain injury-induced pulmonary dysfunction, Antioxid. Red. Signaling, 2015, vol. 17, p. 1316.

    Article  CAS  Google Scholar 

  41. Wei, M., Li, H., Shang, Y., Zhou, Z., and Zhang, J., Increased CD147 (EMMPRIN) expression in the rat brain following traumatic brain injury, Brain Res., 2014, vol. 1585, p. 150.

    Article  CAS  Google Scholar 

  42. Yamamoto, Y., Liang, M., Munesue, S., Deguchi, K., Harashima, A., Furuhara, K., Yuhi, T., Zhong, J., Akther, S., Goto, H., Eguchi, Y., Kitao, Y., Hori, O., Shiraishi, Y., Ozaki, N., et al., Vascular RAGE transports oxytocin into the brain to elicit its maternal bonding behaviour in mice, Commun. Biol., 2019, vol. 1, p. 76.

    Article  Google Scholar 

  43. Zinchuk, V., Zinchuk, O., and Okada, T., Quantitative colocalization analysis of multicolor confocal immunofluorescence microscopy images: Pushing pixels to explore biological phenomena, Acta Histochem. Cytochem., 2007, vol. 40, p. 101.

    Article  CAS  Google Scholar 

Download references

Funding

This work was carried out with state financial support of the Presidential Program for Leading Scientific Schools of the Russian Federation, project no. NSh-6240.2018.7.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Morgun.

Ethics declarations

Conflict of interest. The authors declare they have no conflict of interest.

Statement on the welfare of animals. Animal experiments were carried out in accordance with generally accepted ethical international standards in compliance with the principles of humaneness set out in the European Community Directive (2010/63/EC) and the requirements of order of the Russian Ministry of Health no. 267 dated June 19, 2003, “On the Approval of the Guidelines of Laboratory Practice in the Russian Federation.”

Additional information

Abbreviations: Aβ—beta-amyloid β, AD—Alzheimer’s disease, BBB—blood–brain barrier, NVU—neurovascular unit, RAGE—protein glycation end product receptor.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morgun, A.V., Osipova, E.D., Boitsova, E.B. et al. Vascular Component of Neuroinflammation in Experimental Alzheimer’s Disease in Mice. Cell Tiss. Biol. 14, 256–262 (2020). https://doi.org/10.1134/S1990519X20040057

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990519X20040057

Keywords:

Navigation