Skip to main content
Log in

Inverse Problem of Pure Bending of a Beam under Creep Conditions

  • Published:
Journal of Applied and Industrial Mathematics Aims and scope Submit manuscript

Abstract

We propose an algorithm for solving the inverse problem of forming structural members under creep conditions using the Nelder–Mead algorithm. The initial problem of finding the forces that must be applied to obtain the desired curvature of a part is reduced to a sequence of auxiliary direct problems of modeling the stress-strain state of pure bending of rectangular beams. This model, taking into account the difference in the properties of the material in tension and compression as well as the presence of accumulated damage in the material during creep, was verified by numerical methods and implemented in the finite element program MSC Marc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. F. C. Ribeiro, E. P. Marinho, D. J. Inforzato, P. R. Costa, and G. F. Batalha, “Creep age forming: A short review of fundaments and applications,” J. Achiev. Mater. Manuf. Eng. 43 (1), 353–361 (2010).

    Google Scholar 

  2. H. Luo, W. Li, Ch. Li, and M. Wan, “Investigation of creep-age forming of aluminum lithium alloy stiffened panel with complex structures and variable curvature,” J. Adv. Manuf. Technol. 91 (9–12), 3265–3271 (2017). https://doi.org/10.1007/s00170-017-0004-z

  3. A. C. L. Lam, Zh. Shi, H. Yang, W. Li, C. M. Davies, J. Lin, and Sh. Zhou, “Creep-age forming AA2219 plates with different stiffener designs and pre-form age conditions: Experimental and finite element studies,” J. Mater. Process. Technol. 219, 155–163 (2015). https://doi.org/10.1016/j.jmatprotec.2014.12.012

  4. K. S. Bormotin, S. V. Belykh, and Vin Aung, “Mathematical modeling of inverse multipoint forming problems in the creep mode using a reconfigurable tool,” Vychisl. Metody Program. 17, 258–267 (2016) [in Russian]. https://doi.org/10.26089/NumMet.v17r324

  5. B. V. Gorev and V. A. Panamarev, “The method of integral characteristics for calculating the bending of structural elements,” Nauchno-Tekh. Vestn. S.-Peterb. Gos. Politekh. Univ. Fiz.-Mat. Nauki (177), 201–211 (2013) [in Russian].

  6. B. D. Annin, A. I. Oleinikov, and K. S. Bormotin, “ Modeling of forming of wing panels of the SSJ-100 aircraft,” J. Appl. Mech. Tech. Phys. 51 (4), 579–589 (2010).

    Article  MATH  Google Scholar 

  7. A. Zolochevsky, S. Sklepus, T. H. Hyde, A. A. Becker, and S. Peravali, “Numerical modeling of creep and creep damage in thin plates of arbitrary shape from materials with different behavior in tension and compression under plane stress conditions,” J. Numer. Meth. Eng. 80 (11), 1406–1436 (2009). https://doi.org/10.1002/nme.2663

  8. K. Naumenko and H. Altenbach, Modeling High Temperature Materials Behavior for Structural Analysis. Part I: Continuum Mechanics Foundations and Constitutive Models (Springer-Verlag, London, 2016).

    Book  MATH  Google Scholar 

  9. V. P. Agapov, “Modeling of tee bars in the calculations of building structures by the finite element method,” Stroit. Mekh. Inzh. Konstr. Sooruzh. (2), 55–59 (2016) [in Russian].

  10. Yu. N. Rabotnov, Creep of Structural Members (Nauka, Moscow, 1966) [in Russian].

    Google Scholar 

  11. A. F. Nikitenko, Creep and Long-Term Strength of Metallic Materials (NGASU, Novosibirsk, 1997) [in Russian].

    Google Scholar 

  12. O. V. Sosnin, B. V. Gorev, and A. F. Nikitenko, Energy Variant of the Theory of Creep (IGIL SO RAN, Novosibirsk, 1986) [in Russian].

    MATH  Google Scholar 

  13. P. S. Volegov, D. S. Gribov, and P. V. Trusov, “Damage and fracture: Classical continuum theories,” Fiz. Mezomekh. 18 (4), 68–87 (2015) [in Russian].

    Google Scholar 

  14. A. M. Lokoshchenko, Creep and Long-Term Strength of Metals (Fizmatlit, Moscow, 2016) [in Russian].

    Google Scholar 

  15. V. P. Radchenko and P. E. Kichaev, Energy Concept of Creep and Vibrocreep of Metals (Izd. Samarsk. Gos. Tekh. Univ., Samara, 2011) [in Russian].

    Google Scholar 

  16. M. Ya. Brovman, “Creep deformation of beams under compression and bending stresses,” Mech. Solids 52 (1), 75–80 (2017). https://doi.org/10.3103/S0025654417010095

  17. B. V. Gorev, I. V. Lyubashevskaya, V. A. Panamarev, and S. V. Iyavoynen, “Description of creep and fracture of modern construction materials using kinetic equations in energy form,” J. Appl. Mech. Tech. Phys. 55 (6), 1020–1030 (2014).

    Article  Google Scholar 

  18. E. B. Kuznetsov and S. S. Leonov, “Mathematical modeling of pure bending of a beam made of multimodulus aviation material under creep conditions,” Vestn. RUDN. Ser. Inzh. Issled. (1), 111–122 (2015) [in Russian].

  19. S. N. Korobeinikov, A. I. Oleinikov, V. B. Gorev, and K. S. Bormotin, “Mathematical simulation of creep processes in metal patterns made of materials with different extension compression properties,” Vychisl. Metody Program. 9, 346–365 (2008) [in Russian].

    Google Scholar 

  20. A. M. Lokoshchenko, K. A. Agakhi, and L. V. Fomin, “Pure bending of a beam under creep conditions from a differently resisting material,” Vestn. Samarsk. Gos. Tekh. Univ. Ser. Fiz.-Mat. Nauki (1 (26)), 66–73 (2012) [in Russian]. https://doi.org/10.14498/vsgtu1042

  21. M. Sitar, F. Kosel, and M. Brojan, “Numerical and experimental analysis of elastic–plastic pure bending and spring back of beams of asymmetric cross-sections,” J. Mech. Sci. 90, 77–88 (2015). https://doi.org/10.1016/j.ijmecsci.2014.11.006

  22. R. H. Merson, “An operational method for the study of integration processes,” Proc. Symp. Data Process. Weapons Res. Establ. Salisbury (Salisbury, 1957), 110–125.

  23. A. E. Mudrov, Numerical Methods for PC in BASIC, Fortran and Pascal Languages (RASKO, Tomsk, 1991) [in Russian].

    Google Scholar 

  24. B. V. Gorev, “To the calculation for unsteady creep of a bent beam from a material with different characteristics in tension and compression,” Din. Sploshnoi Sredy (14), 44–51 (1973) [in Russian].

  25. Marc. 2014. V. A: Theory and User Information (MSC Software Corp.). http://www.mscsoftware.com/product/marc .

  26. K. J. Bathe, Finite Element Procedures in Engineering Analysis (Prentice-Hall, New York, 1982).

    Google Scholar 

  27. K. S. Bormotin, “Iterative numerical methods for computer simulation of optimal forming and riveting of thin-walled panels,” Doctoral (Phys.-Math.) Dissertation (Komsomolsk-on-Amur, 2014).

  28. Marc. 2014. V. D: User Subroutines and Special Routines (MSC Software Corp.). http://www.mscsoftware.com/product/marc .

  29. S. N. Korobeinikov, Nonlinear Deformation of Solids (Izd. Sib. Otd. Ross. Akad. Nauk, Novosibirsk, 2000) [in Russian].

    MATH  Google Scholar 

  30. K. N. Rudakov, UGS Femap 10.2.0 Geometric and Finite-Element Modeling of Structures (Kiev. Politekh. Inst., Kiev, 2011) [in Russian].

    Google Scholar 

  31. O. V. Sosnin, B. V. Gorev, and V. V. Rubanov, “Torsion of a square plate made of a material with different resistance in tension and compression during creep,” Raschety Prochn. Sudovykh Konstr. Mekh. (117), 78–88 (1976) [in Russian].

  32. J. A. Nelder and R. Mead, “A simplex for function minimization,” Comput. J. 7 (4), 308–313 (1965).

    Article  MathSciNet  MATH  Google Scholar 

  33. S. Yu. Gorodetskii and V. A. Grishagin, Nonlinear Programming and Multiextremal Optimization (Izd. NNGU, Nizhny Novgorod, 2007) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. V. Boyko or A. Yu. Larichkin.

Additional information

Translated by V. Potapchouck

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boyko, S.V., Larichkin, A.Y. Inverse Problem of Pure Bending of a Beam under Creep Conditions. J. Appl. Ind. Math. 17, 260–271 (2023). https://doi.org/10.1134/S1990478923020047

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990478923020047

Keywords

Navigation