Skip to main content
Log in

Construction of Solutions to a Boundary Value Problem with Singularity for a Nonlinear Parabolic System

  • Published:
Journal of Applied and Industrial Mathematics Aims and scope Submit manuscript

Abstract

We consider a system of two nonlinear second-order parabolic equations with singularity. Systems of this type are applied in chemical kinetics to describe reaction-diffusion processes. We prove the existence and uniqueness theorem of an analytic solution having the diffusion-wave type at a given wave front. The proof is constructive, and the solution had the form of a power series with recursively calculated coefficients. Moreover, we propose some numerical algorithm based on the boundary element method whose verification uses the segments of analytic solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. I. V. Stepanova, “Group Analysis of Variable Coefficients Heat and Mass Transfer Equations with Power Nonlinearity of Thermal Diffusivity,” Appl. Math. Comput. 343, 57–66 (2019).

    MathSciNet  MATH  Google Scholar 

  2. E. P. Zemskov, “Turing Instability in Reaction-Diffusion Systems with Nonlinear Diffusion,” Zh. Eksperim. Teor. Fiz. 144 (4), 878–884 (2013) [J. Experim. Theor. Phys. 117, 764–769 (2013)].

    Article  Google Scholar 

  3. A. V. Schmidt, “Exact Solutions of the Systems of Reaction-Diffusion Type Equations,” Vychisl. Tekhnol. 3 (4), 87–94 (1998).

    MathSciNet  MATH  Google Scholar 

  4. Ya. B. Zel’dovich and Yu. P. Raizer, Physics of Shock Waves and High Temperature Hydrodynamics Phenomena (Fizmatlit, Moscow, 1966; Dover Publ., New York, 2002).

    Google Scholar 

  5. A. A. Samarskii, V. A. Galaktionov, S. P. Kurdyumov, and A. P. Mikhailov, Blow-Up in Quasilinear Parabolic Equations (Nauka, Moscow, 1987; Walter de Gruyte, Berlin, 1995).

    MATH  Google Scholar 

  6. J. L. Vazquez, The Porous Medium Equation: Mathematical Theory (Clarendon Press, Oxford, 2007).

    MATH  Google Scholar 

  7. G. I. Barenblatt, V. M. Entov, and V. M. Ryzhik, Theory of Unsteady Filtration of Fluids and Gases (Nedra, Moscow, 1972) [in Russian].

    Google Scholar 

  8. J. Murray, Mathematical Biology. I: An Introduction (Springer, New York, 2002).

    Book  Google Scholar 

  9. N. E. Leont’ev, “Exact Solutions to the Problem of Deep-Bed Filtration with Retardation of a Jump in Concentration within the Framework of the Nonlinear Two-Velocity Model,” Izv. Ross. Akad. Nauk. Mekh. Zhidk. Gaza No. 1, 168–174 (2017) [Fluid Dynamics 52, 165–170 (2017)].

    Article  MathSciNet  Google Scholar 

  10. A. Arguchintsev and V. Poplevko, “An Optimal Control Problem by a Hybrid System of Hyperbolic and Ordinary Differential Equations,” Games 12 (1), 23 (2021).

    Article  MathSciNet  Google Scholar 

  11. A. Arguchintsev and V. Poplevko, “An Optimal Control Problem by a Hyperbolic System with Boundary Delay,” Bulletin Irkutsk State Univ. Ser. Math. 35, 3–17 (2021).

    Article  MathSciNet  Google Scholar 

  12. G. V. Demidenko and S. V. Uspenskii, Partial Differential Equations and Systems Not Solvable with Respect to the Highest-Order Derivative (Nauchnaya Kniga, Novosibirsk, 1998; Marcel Dekker, New York, Basel, 2003).

    MATH  Google Scholar 

  13. G. Gambino, M. C. Lombardo, M. Sammartino, and V. Sciacca, “Turing Pattern Formation in the Brusselator System with Nonlinear Diffusion,” Phys. Rev. E 88, 042925 (2013).

    Article  Google Scholar 

  14. A. V. Schmidt, “Analysis of Reaction-Diffusion Systems by the Method of Linear Determining Equations,” Zh. Vychisl. Mat. Mat. Fiz. 47 (2), 256–268 (2007) [Comp. Math. Math. Phys. 47 (2), 249–261 (2007)].

    Article  Google Scholar 

  15. A. F. Sidorov, Selected Works: Mathematics. Mechanics (Moscow, Fizmatlit, 2001) [in Russian].

    Google Scholar 

  16. M. Yu. Filimonov, “Representation of Solutions of Boundary Value Problems for Nonlinear Evolution Equations by Special Series with Recurrently Calculated Coefficients,” J. Phys. Conf. Ser. pp. 012071 (2019).

  17. A. L. Kazakov and L. F. Spevak, “Boundary Element Method and Power Series Method for Onedimensional Nonlinear Filtration Problems,” Izv. Irkutsk. Gos. Univ. Ser. Mat. 5 (2), 2–17 (2012).

    MATH  Google Scholar 

  18. A. L. Kazakov and P. A. Kuznetsov, “On One Boundary Value Problem for a Nonlinear Heat Equation in the Case of Two Space Variables,” Sibir. Zh. Ind. Mat. 17 (1), 46–54 (2014) [J. Appl. Ind. Math. 8 (2), 227–235 (2014)].

    Article  MathSciNet  Google Scholar 

  19. A. L. Kazakov and P. A. Kuznetsov, “On the Analytic Solutions of a Special Boundary Value Problem for a Nonlinear Heat Equation in Polar Coordinates,” Sibir. Zh. Ind. Mat. 21 (2), 56–65 (2018) [J. Appl. Ind. Math. 12 (2), 255–263 (2018)].

    Article  MathSciNet  Google Scholar 

  20. L. F. Spevak and O. A. Nefedova, “Solving a Two-Dimensional Nonlinear Heat Conduction Equation with Degeneration by the Boundary Element Method with the Application of the Dual Reciprocity Method,” AIP Conf. Proc. 1785, p. 040077 (2016).

  21. L. V. Ovsyannikov, Group Analysis of Differential Equations (Nauka, Moscow, 1978; Academic Press, New York, 1982).

    MATH  Google Scholar 

  22. A. D. Polyanin and V. F. Zaitsev, Handbook of Nonlinear Partial Differential Equations (Chapman and Hall/CRC, Boca Raton, 2012).

    MATH  Google Scholar 

  23. N. A. Kudryashov and D. I. Sinelshchikov, “Analytical Solutions for Nonlinear Convection-Diffusion Equations with Nonlinear Sources,” Automat. Contr. Comput. Sci. 51 (7), 621–626 (2017).

    Article  Google Scholar 

  24. A. L. Kazakov, Sv. S. Orlov, and S. S. Orlov, “Construction and Study of Exact Solutions to a Nonlinear Heat Equation,” Sibir. Mat. Zh. 59 (3), 544–560 (2018) [Siberian Math. J. 59 (3), 427–441 (2018)].

    Article  MathSciNet  Google Scholar 

  25. A. L. Kazakov and L. F. Spevak, “Approximate and Exact Solutions to the Singular Nonlinear Heat Equation with a Common Type of Nonlinearity,” Izv. Irkutsk. Gos. Univ. Ser. Mat. 34 (1), 18–34 (2020).

    MathSciNet  MATH  Google Scholar 

  26. A. L. Kazakov, P. A. Kuznetsov, and A. A. Lempert, “Analytical Solutions to the Singular Problem for a System of Nonlinear Parabolic Equations of the Reaction-Diffusion Type,” Symmetry 12 (6), 999 (2020).

    Article  Google Scholar 

  27. A. Arguchintsev and V. Poplevko, “An Optimal Control Problem by Parabolic Equation with Boundary Smooth Control and an Integral Constraint,” Numer. Algebra, Control and Optim. 8 (2), 193–202 (2018).

    Article  MathSciNet  Google Scholar 

  28. S. P. Bautin and A. L. Kazakov, Generalized Cauchy Problem with Applications (Nauka, Novosibirsk, 2006) [in Russian].

    Google Scholar 

Download references

Funding

The authors were supported by the Russian Foundation for Basic Research and the Government of the Irkutsk Region (project no. 20–41–385002), and by the Russian Foundation for Basic Research and the Taiwan Ministry of Science and Technology (MOST) (project no. 20–51–S52003).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. L. Kazakov, P. A. Kuznetsov or L. F. Spevak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kazakov, A.L., Kuznetsov, P.A. & Spevak, L.F. Construction of Solutions to a Boundary Value Problem with Singularity for a Nonlinear Parabolic System. J. Appl. Ind. Math. 15, 616–626 (2021). https://doi.org/10.1134/S1990478921040050

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990478921040050

Keywords

Navigation