Skip to main content
Log in

The Miles Theorem and the First Boundary Value Problem for the Taylor-Goldstein Equation

  • Published:
Journal of Applied and Industrial Mathematics Aims and scope Submit manuscript

Abstract

We study the problem of the linear stability of stationary plane-parallel shear flows of an inviscid stratified incompressible fluid in the gravity field between two fixed impermeable solid parallel infinite plates with respect to plane perturbations in the Boussinesq approximation and without it. For both cases, we construct some analytical examples of steady plane-parallel shear flows of an ideal density-heterogeneous incompressible fluid and small plane perturbations in the form of normal waves imposed on them, whose asymptotic behavior proves that these perturbations grow in time regardless of whether the well-known result of spectral stability theory (the Miles Theorem) is valid or not.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. W. Miles, “On the Stability of Heterogeneous Shear Flows,” J. Fluid Mech. 10, 496–508 (1961).

    Article  MathSciNet  MATH  Google Scholar 

  2. L. N. Howard, “Note on a Paper of John Miles,” J. Fluid Mech. 10, 509–512 (1961).

    Article  MathSciNet  MATH  Google Scholar 

  3. L. A. Dikii, Hydrodynamical Stability and Atmosphere Dynamics (Gidrometeoizdat, Leningrad, 1976) [in Russian].

    Google Scholar 

  4. O. R. Kozyrev and Yu. A. Stepanyants, “Method of Integral Relations in the Linear Theory of Hydrodynamical Stability,” Itogi Nauki i Tekhniki. Ser. Mekhanika Zhidkosti i Gaza., Vol. 25 (VINITI, Moscow, 1991), pp. 3–89.

    Google Scholar 

  5. A. A. Gavril’eva and Yu. G. Gubarev, “Stability of Steady Plane-Parallel Shear Flows of an Ideal Stratified Fluid in the Gravity Field,” Vestnik SVFU 9(3), 15–21 (2012).

    Google Scholar 

  6. A. A. Gavril’eva, Yu. G. Gubarev, and M. P. Lebedev, “Rapid Approach to Resolving the Adequacy Problem of Mathematical Modeling of Physical Phenomena by the Example of Solving One Problem of Hydrodynamic Instability,” Internat. J. Theor. Math. Phys. 3(4), 123–129 (2013).

    Google Scholar 

  7. A. A. Gavril’eva, Yu. G. Gubarev, and M. P. Lebedev, “The Miles Theorem and New Particular Solutions to the Taylor-Goldstein Equation,” Uchen. Zap. Kazan. Univ. Ser. Fiz.-Mat. Nauki 158 (2), 156-171.

  8. O. M. Phillips, The Dynamics of the Upper Ocean (University Press, Cambridge, 1966).

    MATH  Google Scholar 

  9. A. M. Lyapunov, The General Problem of the Stability of Motion(Gostekhizdat, Moscow, 1950)[Stability of Motion (Academic Press, New York and London, 1966)].

    MATH  Google Scholar 

  10. N. G. Chetaev, Stability of Motion (Gostekhizdat, Moscow, 1955) [in Russian].

    MATH  Google Scholar 

  11. P. G. Drazin, Introduction to Hydrodynamic Stability (Cambridge University Press, Cambridge, 2002; Fizmatlit, Moscow, 2005).

    MATH  Google Scholar 

  12. G. N. Watson, A Treatise on the Theory of Bessel Functions (Cambridge University Press, Cambridge; The Macmillan Company, New York, 1944; Inostrannaya Literatura, Moscow, 1949).

    Google Scholar 

  13. M. A. Lavrent’ev and B. V. Shabat, Methods for the Theory of Functions of a Complex Variable (Nauka, Moscow, 1987) [in Russian].

    MATH  Google Scholar 

  14. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (NBS, 1972; Nauka, Moscow, 1979).

    MATH  Google Scholar 

  15. A. N. Tikhonov and A. A. Samarskii, Equations of Mathematical Physics (Pergamon Press, Oxford, 1963; Nauka, Moscow, 1977).

    MATH  Google Scholar 

  16. B. L. van der Waerden, Algebra (Nauka, Moscow, 1979) [in Russian].

    Google Scholar 

  17. A. Erdelyi, W. Magnus, F. Oberhettinger, and F. Tricomi, Higher Transcendental Functions. Vol. I. Bateman Manuscript Project (McGraw-Hill, New York, 1953; Nauka, Moscow, 1973).

    MATH  Google Scholar 

  18. F W. J. Olver, Asymptotics and Special Functions (Academic Press, New York, 1974; Nauka, Moscow, 1990).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. A. Gavril’eva, Yu. G. Gubarev or M. P. Lebedev.

Additional information

Russian Text © The Author(s), 2019, published in Sibirskii Zhurnal Industrial’noi Matematiki, 2019, Vol. XXII, No. 3, pp. 24–38.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gavril’eva, A.A., Gubarev, Y.G. & Lebedev, M.P. The Miles Theorem and the First Boundary Value Problem for the Taylor-Goldstein Equation. J. Appl. Ind. Math. 13, 460–471 (2019). https://doi.org/10.1134/S1990478919030074

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990478919030074

Keywords

Navigation