Skip to main content
Log in

Promising Cathode Materials for Solid Oxide Fuel Cells

  • Published:
Journal of Engineering Thermophysics Aims and scope

Abstract

PURPOSE. The cathode in a solid oxide fuel cell is responsible for reduction of oxygen molecules to oxygen ions, which then migrate through the electrolyte to the anode. The thermophysical properties of the cathode material play a crucial role for the performance and efficiency of the fuel cell. So, creation of the cathodes of solid oxide fuel cells (SOFCs) requires taking into account the thermal and chemical stability, as well as analysis of the main characteristics of the cathodes, such as the electrocatalyst activity, electrical conductivity, and mechanical strength. This article presents a review of scientific literature on the qualitative characteristics of SOFC cathodes made of various alloys, as well as their operation parameters. In the review, results of functioning of such cathodes are compared in view of possible improvement of their performance parameters in dependence on the composition of the materials used. The composition and microstructure of cathode materials have a great influence on the characteristics of SOFCs. A rational composition of materials is ensured by controlled oxygen non-stoichiometry, and some aspects of defects can improve the ionic and electronic conductivity, as well as catalytic properties for the oxygen reduction in the cathode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

REFERENCES

  1. Gurevich, I.G., Current State of Development of Fuel Cells, IFZh, 2008, vol. 81, no. 1, pp. 8–18.

    Google Scholar 

  2. Laptev, A.G., Farakhov, T.M., and Lapteva, E.A., Thermal Hydraulic Effectiveness of Heat Exchangers with Volumetric Enhancers for High-Viscosity Liquid Media, J. Eng. Therm., 2021, vol. 30, no. 2, pp. 293–299.

    Article  Google Scholar 

  3. Volodin, O.A., Pecherkin, N.I., and Pavlenko, A.N., Heat Transfer Enhancement at Evaporation and Boiling of Liquid on Capillary-Porous Surfaces Created by 3D Printing, J. Phys., Conf. Ser., 2021, vol. 2119, no. 1, pp. 012075–012080.

    Article  Google Scholar 

  4. Istomin, S.Y. and Antipov, E.V., Cathode Materials Based on Perovskite-Like Transition Metal Oxides for Intermediate Temperature Solid Oxide Fuel Cells, Russ. Chem. Rev., 2013, vol. 82, no. 7, pp. 686–700.

    Article  ADS  Google Scholar 

  5. Hodges, J.P., Short, S., Jorgensen, J.D., Xiong, X., Dabrowski, B., Mini, S.M., and Kimball, C.M., Evolution of Oxygen-Vacancy Ordered Crystal Structures in the Perovskite Series Sr\(_n\)Fe\(_n\)O\(_{3n-1}\) (\(n= 2\), 4, 8, and \(\infty )\), and the Relationship to Electronic and Magnetic Properties, J. Solid State Chem., 2000, vol. 151, no. 2, pp. 190–209.

    Article  ADS  Google Scholar 

  6. Tsujimoto, Y., Tassel, C., Hayashi, N., Watanbe, T., Kageyama, H., Yoshimura, K, Takano, M., Ceretti, M., Ritter, C., and Paulus, W., Infinite-Layer Iron Oxide with a Square-Planar Coordination, Nat. Lett., 2007, vol. 450, pp. 1062–1065.

    Article  ADS  Google Scholar 

  7. Dai, D., Liu, Y., Qiu, H., Xiao, D., and Jiang, H., Design and Study of Ta/P Co-Doped SrFeO\(_{3-\delta}\) as Cathode for Solid Oxide Fuel Cells, Int. J. Electrochem. Sci., 2022, vol. 17, no. 220231, p. 2.

    Google Scholar 

  8. Su, T., Zhang, T., Xie, H., Zhong, J., and Xia, C., Investigation into Structure and Property of W and Ti Co-Doped SrFeO3 Perovskite as Electrode of Symmetrical Solid Oxide Fuel Cell, Int. J. Hydrogen Energy, 2022, vol. 47, no. 36, pp. 16272–16282.

    Article  Google Scholar 

  9. Yatoo, M.A., Qazi, M.J., Habib, F., Ahmad, Z., Ahmad, S., Malik, A.H., and Ganyee, A., A Critical Review on Materials for Solid Oxide Fuel Cell Components, 2023.

  10. Poeppelmeier, K.R., Leonowicz, M.E., Scanlon, J.C., Longo, J.M., and Yelon, W.B., Structural Determination of CaMnO3 and CaMnO2.5 by X-ray and Neutron Methods, J. Solid State Chem., 1982, vol. 45, no. 1, pp. 71–79.

    Article  ADS  Google Scholar 

  11. Caignaert, V., Nguyen, N., Hervieu, M., and Ravaeu, B., Sr2Mn2O5, an Oxygen-Defect Perovskite with Mn(II) in Square Pyramidal Coordination, Mater. Res. Bull., 1985, vol. 20, no. 5, pp. 479–484.

    Article  Google Scholar 

  12. Ruffa, A.R., Thermal Expansion in Insulating Materials, J. Mater. Sci., 1980, vol. 15, no. 9, pp. 2258–2267.

    Article  ADS  Google Scholar 

  13. Inaba, H. and Tagawa, H., Semi-Empirical Estimation of Thermal Expansion Coefficients of Perovskite-Type Oxides, J. Ceram. Soc. Jpn., 1998, vol. 106, no. 1231, pp. 272–278.

    Article  Google Scholar 

  14. Sun, J., Liu, X., Han, F., Zhu, L., Bi, H., Wang, H., Yu, S., and Pei, L., NdBa\(_{1-x}\)Co2O\(_{5+\delta}\) as Cathode Materials for IT-SOFC, Solid State Ion., 2016, vol. 288, pp. 54–60.

    Article  Google Scholar 

  15. Sahini, M.G. and Lupyana, S.D., Perspective and Control of Cation Interdiffusion and Interface Reactions in Solid Oxide Fuel Cells (SOFCs), Mater. Sci. Engin.: B, 2023, vol. 292, p. 116415.

    Article  Google Scholar 

  16. Xia, C., Rauch, W., Chen, F., and Liu, M., Sm0.5Sr0.5CoO3 Cathodes for Low-Temperature SOFCs, Solid State Ion., 2002, vol. 149, p. 11-9.

    Article  Google Scholar 

  17. Ralph, J.M., Rossignol, C., and Kumar, R., Cathode Materials for Reduced-Temperature SOFCs, J. Electrochem. Soc., 2003, vol. 150, no. 11, p. A1518-22.

    Article  ADS  Google Scholar 

  18. Dusastre, V. and Kilner, J.A., Optimisation of Composite Cathodes for Intermediate Temperature SOFC Applications, Solid State Ion., 1999, vol. 126, pp. 163–174.

    Article  Google Scholar 

  19. Maguire, E., Gharbage, B., Marques, F.M.B., and Labrincha, J.A., Cathode Materials for Intermediate Temperature SOFCs, Solid State Ion., 2000, vol. 127, pp. 329–335.

    Article  Google Scholar 

  20. Kim, J.H., Cassidy, M., Irvine, J.T.S., and Bae, J., Advanced Electrochemical Properties of LnBa0.5Sr0.5Co2O\(_{5+\delta}\) (Ln = Pr, Sm, and Gd) as Cathode Materials for IT-SOFC, J. Electrochem. Soc., 2009, vol. 156, no. 6, p. B682-9.

    Google Scholar 

  21. Kim, J., Sengodan, S., Kwon, G., Ding, D., Shin, J., Liu, M., and Kim, G., Triple-Conducting Layered Perovskites as Cathode Materials for Proton-Conducting Solid Oxide Fuel Cells, ChemSusChem, 2014, vol. 7, no. 10, p. 2811-5.

    Article  Google Scholar 

  22. Wang, B., Bi, L., and Zhao, X.S., Liquid-Phase Synthesis of SrCo0.9Nb0.1O\(_{3-d}\) Cathode Material for Proton-Conducting Solid Oxide Fuel Cells, Ceram. Int., 2018, vol. 44, no. 5, pp. 5139–5144.

    Article  Google Scholar 

  23. Baharuddin, N.A., Muchtar, A., and Somalu, M.R., Short Review on Cobalt-Free Cathodes for Solid Oxide Fuel Cells, Int. J. Hydrogen Energy, 2017, vol. 42, no. 14, pp. 9149–9155.

    Article  Google Scholar 

  24. Ding, H. and Xue, X., Cobalt-Free Layered Perovskite GdBaFe2O\(_{5+x}\) as a Novel Cathode for Intermediate Temperature Solid Oxide Fuel Cells, J. Power Sources, 2010, vol. 195, pp. 4718–4721.

    Article  ADS  Google Scholar 

  25. Zhou, Q., Zhang, L., and He, T., Cobalt-Free Cathode Material SrFe0.9Nb0.1O\(_{3-d}\) for Intermediate-Temperature Solid Oxide Fuel Cells, Electrochem. Comm., 2010, vol. 12, pp. 285–287.

    Article  ADS  Google Scholar 

  26. Jiang, S., Zhou, W., Niu, Y., Zhu, Z., and Shao, Z., Phase Transition of a Cobalt-free Perovskite as a High-Performance Cathode for Intermediate-Temperature Solid Oxide Fuel Cells, ChemSusChem, 2012, vol. 5, pp. 2023–2031.

    Article  Google Scholar 

  27. Duan, C., Hook, D., Chen, Y., Tong, J., and O’Hayre, R., Zr and Y Codoped Perovskite as a Stable, High Performance Cathode for Solid Oxide Fuel Cells Operating below 500°C, Energy Environ. Sci., 2017, vol. 10, pp. 176–182.

    Article  Google Scholar 

  28. Zhang, Z., Zhu, Y., Zhong, Y., Zhou, W., and Shao, Z., Anion Doping: A New Strategy for Developing High-Performance Perovskite-Type Cathode Materials of Solid Oxide Fuel Cells, Adv. Energy Mater., 2017, vol. 7, no. 17, p. 1700242.

    Article  Google Scholar 

  29. Li, M., Zhao, M, Li., F, Zhou, W., Peterson, V.K., Xu, X., Shao, Z., Gentle, I., and Zhu, Z., A Niobium and Tantalum Co-doped Perovskite Cathode for Solid Oxide Fuel Cells Operating below 500°C, Nat. Commun., 2017, vol. 8, pp. 1–9.

    Google Scholar 

  30. Zhou, W., Sunarso, J., Zhao, M., Liang, F., Klande, T., and Feldhoff, A., A Highly Active Perovskite Electrode for the Oxygen Reduction Reaction below 600°C, Angew. Chem., 2013, vol. 52, pp. 14036-14040.

    Article  Google Scholar 

  31. Jiang, S.P., A Comparison of O2 Reduction Reactions on Porous (La, Sr)MnO3 and (La, Sr)(Co, Fe)O3 Electrodes, Solid State Ion., 2002, vol. 146, nos. 1/2, pp. 1–22.

    Article  Google Scholar 

  32. Yamamoto, O., Takeda, Y., Kanno, R., and Noda, M., Perovskite-Type Oxides as Oxygen Electrodes for High Temperature Oxide Fuel Cells, Solid State Ion., 1987, vol. 22, nos. 2/3, pp. 241–246.

    Article  Google Scholar 

  33. Ishihara, T., Kudo, T., Matsuda, H., and Takita, Y., Doped PrMnO3 Perovskite Oxide as a New Cathode of Solid Oxide Fuel Cells for Low Temperature Operation, J. Electrochem. Soc., 1995, vol. 142, no. 5, p. 1519.

    Article  ADS  Google Scholar 

  34. Tietz, F., Raj, I.A., Zahid, M., and Stöver, D., Electrical Conductivity and Thermal Expansion of La0.8Sr0.2(Mn, Fe, Co)O\(_{3-\delta}\) Perovskites, Solid State Ion., 2006, vol. 177, pp. 1753–1756.

    Article  Google Scholar 

  35. Teraoka, Y., Zhang, H.M., Okamoto, K., and Yamazoe, N., Mixed Ionic-Electronic Conductivity of La\(_{1-x}\)Sr\(_x\)Co\(_{1-y}\)Fe\(_y\)O\(_{3-\delta}\) Perovskite-Type Oxides, Mat. Res. Bull., 1988, vol. 23, no. 1, pp. 51–58.

    Article  Google Scholar 

  36. Simner, S.P., Bonnett, J.F., Canfield, N.L., Meinhardt, K.D., Shelton, J.P., Sprenkle, V.L., and Stevenson, J.W., Development of Lanthanum Ferrite SOFC Cathodes, J. Power Sources, 2003, vol. 113, no. 1, pp. 1–10.

    Article  ADS  Google Scholar 

  37. Bongio, E.V., Black, H., Raszewski, F.C., Edwards, D., McConville, C.J., and Amarakoon, V.R., Microstructural and High-Temperature Electrical Characterization of La\(_{1-x}\)Sr\(_x\)FeO\(_{3-\delta}\), J. Electroceram., 2005, vol. 14, no. 3, pp. 193–198.

    Article  Google Scholar 

  38. Patrakeev, M.V., Bahteeva, J.A., Mitberg, E.B., Leonidov, I.A., Kozhevnikov, V.L., and Poeppelmeier, K.R., Electron/Hole and Ion Transport in La\(_{1-x}\)Sr\(_x\)FeO\(_{3-\delta}\), J. Solid State Chem., 2003, vol. 172, no. 1, pp. 219–231.

    Article  ADS  Google Scholar 

  39. Ullmann, H., Trofimenko, N., Tietz, F., Stöver, D., and Ahmad-Khanlou, A., Correlation between Thermal Expansion and Oxide Ion Transport in Mixed Conducting Perovskite-Type Oxides for SOFC Cathodes, Solid State Ion., 2000, vol. 138, p. 79.

    Article  Google Scholar 

  40. Chiba, R., Yoshimura, F., and Sakurai, Y., Properties of La\(_{1 - y}\)Sr\(_{y}\)Ni\(_{1-x}\)Fe\(_{x}\)O3 as a Cathode Material for a Low-Temperature Operating SOFC, Solid State Ion., 1999, vol. 124, p. 281.

    Article  Google Scholar 

  41. Xia, C.R., Rauch, W., Chen, F.L., and Liu, M.L., Functionally Graded Cathodes for Honeycomb Solid Oxide Fuel Cells, Solid State Ion., 2002, vol. 149, p. 11.

  42. Wei, B., Lv, Z., Huang, X.Q., Miao, J.P., Sha, X.Q., Xin, X.S., and Su, W.H., Fabrication of Micro Patterned Ceramic Structure by Imprinting Process, J. Eur. Ceram. Soc., 2006, vol. 26, p. 2827.

    Article  Google Scholar 

  43. Meng, X. et al., Characterization of Pr\(_{1-x}\)Sr\(_x\)Co0.8Fe0.2O\(_{3-\delta}\) (\(0.2\le x\le 0.6\)) Cathode Materials for Intermediate-Temperature Solid Oxide Fuel Cells, J. Power Sources, 2008, vol. 183, no. 2, pp. 581–585.

    Article  ADS  Google Scholar 

  44. Ullmann, H. et al., Correlation between Thermal Expansion and Oxide Ion Transport in Mixed Conducting Perovskite-Type Oxides for SOFC Cathodes, Solid State Ion., 2000, vol. 138, nos. 1/2, pp. 79–90.

    Article  Google Scholar 

  45. Yasumoto, K., et al., An (La, Sr)(Co, Cu)O\(_{3-\delta}\) Cathode for Reduced Temperature SOFCs, Solid State Ion., 2002, vol. 148, nos. 3/4, pp. 545–549.

    Article  Google Scholar 

  46. Piao, J., et al., Preparation and Characterization of Pr\(_{1-x}\)Sr\(_x\)FeO3 Cathode Material for Intermediate Temperature Solid Oxide Fuel Cells, J. Power Sources, 2007, vol. 172, no. 2, pp. 633–640.

    Article  ADS  Google Scholar 

  47. Chen, W., et al., Study of Ln0.6Sr0.4Co0.8Mn0.2O\(_{3-\delta}\) (Ln = La, Gd, Sm, or Nd) as the Cathode Materials for Intermediate Temperature SOFC, Mater. Res. Bull., 2003, vol. 38, no. 8, pp. 1319–1328.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Alsayed omar.

Additional information

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alsayed omar, M.R., Laptev, A.G., Dimiev, A.M. et al. Promising Cathode Materials for Solid Oxide Fuel Cells. J. Engin. Thermophys. 32, 728–735 (2023). https://doi.org/10.1134/S1810232823040070

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1810232823040070

Navigation