Skip to main content
Log in

Quasi-periodic Orbits in Siegel Disks/Balls and the Babylonian Problem

  • Published:
Regular and Chaotic Dynamics Aims and scope Submit manuscript

Abstract

We investigate numerically complex dynamical systems where a fixed point is surrounded by a disk or ball of quasi-periodic orbits, where there is a change of variables (or conjugacy) that converts the system into a linear map. We compute this “linearization” (or conjugacy) from knowledge of a single quasi-periodic trajectory. In our computations of rotation rates of the almost periodic orbits and Fourier coefficients of the conjugacy, we only use knowledge of a trajectory, and we do not assume knowledge of the explicit form of a dynamical system. This problem is called the Babylonian problem: determining the characteristics of a quasi-periodic set from a trajectory. Our computation of rotation rates and Fourier coefficients depends on the very high speed of our computational method “the weighted Birkhoff average”.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Goldstein, B. R., On the Babylonian Discovery of the Periods of Lunar Motion, J. Hist. Astron., 2002, vol. 33, pp. 1–13.

    Article  Google Scholar 

  2. Das, S., Saiki, Y., Sander, E., and Yorke, J. A., Solving the Babylonian Problem of Quasiperiodic Rotation Rates, Discrete Contin. Dyn. Syst. Special Topics, to appear, 2019.

    Google Scholar 

  3. de la Llave, R., Uniform Boundedness of Iterates of Analytic Mappings Implies Linearization: A Simple Proof and Extensions, Regul. Chaotic Dyn., 2018, vol. 23, no. 1, pp. 1–11.

    Article  MathSciNet  MATH  Google Scholar 

  4. Siegel, C. and Moser, J., Lectures on Celestial Mechanics, Grundlehren Math. Wiss., vol. 187, New York: Springer, 1971.

    Book  Google Scholar 

  5. Luque, A. and Villanueva, J., Numerical Computation of Rotation Numbers of Quasi-Periodic Planar Curves, Phys. D, 2009, vol. 238, no. 20, pp. 2025–2044.

    Article  MathSciNet  MATH  Google Scholar 

  6. Siegel, C. L., Iteration of Analytic Functions, Ann. of Math. (2), 1942, vol. 43, pp. 607–612.

    Article  MathSciNet  MATH  Google Scholar 

  7. de la Llave, R. and Petrov, N. P., Boundaries of Siegel Disks: Numerical Studies of Their Dynamics and Regularity, Chaos, 2008, vol. 18, no. 3, 033135, 11 pp.

    Google Scholar 

  8. Milnor, J.W., Dynamics in One Complex Variable: Introductory Lectures, 3rd ed., Ann. of Math. Stud., vol. 160, Princeton: Princeton Univ. Press, 2006.

    MATH  Google Scholar 

  9. Brjuno, A.D., Analytic Form of Differential Equations: 1, Trans. Moscow Math. Soc., 1971, vol. 25, pp. 131–288; see also: Tr. Mosk. Mat. Obs., 1971, vol. 25, pp. 119–262.

    MathSciNet  Google Scholar 

  10. Brjuno, A.D., Analytic Form of Differential Equations: 2, Trans. Moscow Math. Soc., 1972, vol. 26, pp. 199–239; see also: Tr. Mosk. Mat. Obs., 1972, vol. 26, pp. 199–239.

    Google Scholar 

  11. Yoccoz, J.-Ch., Théorème de Siegel, Nombres de Bruno et polynomes quadratiques, in Petits diviseurs en dimension: 1, J.-Ch.Yoccoz (Ed.), Astérisque, vol. 231, Paris: Soc. Math. France, 1995, pp. 3–88.

    Google Scholar 

  12. Ushiki, S., personal communications, 2016.

    Google Scholar 

  13. Gómez, G., Mondelo, J.-M., and Simó, C., A Collocation Method for the Numerical Fourier Analysis of Quasi-Periodic Functions: 1. Numerical Tests and Examples, Discrete Contin. Dyn. Syst. Ser. B, 2010, vol. 14, no. 1, pp. 41–74.

    Article  MathSciNet  MATH  Google Scholar 

  14. Gómez, G., Mondelo, J.-M., and Simó, C., A Collocation Method for the Numerical Fourier Analysis of Quasi-Periodic Functions: 2. Analytical Error Estimates, Discrete Contin. Dyn. Syst. Ser. B, 2010, vol. 14, no. 1, pp. 75–109.

    Article  MathSciNet  MATH  Google Scholar 

  15. Cremer, H., Zum Zentrumproblem, Math. Ann., 1928, vol. 98, no. 1, pp. 151–163.

    Article  MathSciNet  MATH  Google Scholar 

  16. Jorba, A., Numerical Computation of the Normal Behaviour of Invariant Curves of N-Dimensional Maps, Nonlinearity, 2001, vol. 14, no. 5, pp. 943–976.

    Article  MathSciNet  MATH  Google Scholar 

  17. Das, S., Dock, Ch.B., Saiki, Y., Salgado-Flores, M., Sander, E., Wu, J., and Yorke, J. A., Measuring Quasiperiodicity, Europhys. Lett., 2016, vol. 116, no. 4, 40005, 6 pp.

    Google Scholar 

  18. Das, S., Saiki, Y., Sander, E., and Yorke, J. A., Quantitative Quasiperiodicity, Nonlinearity, 2017, vol. 30, no. 11, pp. 4111–4140.

    Article  MathSciNet  MATH  Google Scholar 

  19. Das, S. and Yorke, J.A., Super Convergence of Ergodic Averages for Quasiperiodic Orbits, Nonlinearity, 2018, vol. 31, no. 2, pp. 491–501.

    Article  MathSciNet  MATH  Google Scholar 

  20. Brin, M. and Stuck, G., Introduction to Dynamical Systems, Cambridge: Cambridge Univ. Press, 2002.

    Book  MATH  Google Scholar 

  21. Laskar, J., Introduction to Frequency Map Analysis, in Hamiltonian Systems with Three or More Degrees of Freedom (S’Agaró, 1995), C. Simó (Ed.), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 533, Dordrecht: Kluwer, 1999, pp. 134–150.

    Google Scholar 

  22. Laskar, J., Frequency Analysis of a Dynamical System, Celestial Mech. Dynam. Astronom., 1993, vol. 56, nos. 1–2, pp. 191–196.

    Article  MathSciNet  MATH  Google Scholar 

  23. Laskar, J., Frequency Analysis for Multi-Dimensional Systems. Global Dynamics and Diffusion, Phys. D, 1993, vol. 67, nos. 1–3, pp. 257–283.

    Article  MathSciNet  MATH  Google Scholar 

  24. Laskar, J., Frequency Map Analysis and Particle Accelerators, in Proc. of the 20th IEEE Particle Accelerator Conference (PAC’03, 2–16 May 2003, Portland, Oregon), pp. 378–382.

    Google Scholar 

  25. Seara, T. M. and Villanueva, J., On the Numerical Computation of Diophantine Rotation Numbers of Analytic Circle Maps, Phys. D, 2006, vol. 217, no. 2, pp. 107–120.

    Article  MathSciNet  MATH  Google Scholar 

  26. Luque, A. and Villanueva, J., Numerical Computation of Rotation Numbers of Quasi-Periodic Planar Curves, Phys. D, 2009, vol. 238, no. 20, pp. 2025–2044.

    Article  MathSciNet  MATH  Google Scholar 

  27. Luque, A. and Villanueva, J., Quasi-Periodic Frequency Analysis Using Averaging-Extrapolation Methods, SIAM J. Appl. Dyn. Syst., 2014, vol. 13, no. 1, pp. 1–46.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshitaka Saiki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saiki, Y., Yorke, J.A. Quasi-periodic Orbits in Siegel Disks/Balls and the Babylonian Problem. Regul. Chaot. Dyn. 23, 735–750 (2018). https://doi.org/10.1134/S1560354718060084

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560354718060084

Keywords

MSC2010 numbers

Navigation