Skip to main content
Log in

Poisson Brackets after Jacobi and Plücker

  • Published:
Regular and Chaotic Dynamics Aims and scope Submit manuscript

Abstract

We construct a symplectic realization and a bi-Hamiltonian formulation of a 3-dimensional system whose solution are the Jacobi elliptic functions. We generalize this system and the related Poisson brackets to higher dimensions. These more general systems are parametrized by lines in projective space. For these rank 2 Poisson brackets the Jacobi identity is satisfied only when the Plücker relations hold. Two of these Poisson brackets are compatible if and only if the corresponding lines in projective space intersect. We present several examples of such systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adler, M., van Moerbeke, P., and Vanhaecke, P., Algebraic Integrability, Painlevé Geometry and Lie Algebras, Ergeb. Math. Grenzgeb. (3), vol. 47, Berlin: Springer, 2004.

    Book  MATH  Google Scholar 

  2. Borisov, A.V. and Mamaev, I. S., Rigid Body Dynamics: Hamiltonian Methods, Integrability, Chaos, Izhevsk: R&C Dynamics, Institute of Computer Science, 2005 (Russian).

    MATH  Google Scholar 

  3. Borisov, A.V. and Mamaev, I. S., Isomorphisms of Geodesic Flows on Quadrics, Regul. Chaotic Dyn., 2009, vol. 14, nos. 4–5, pp. 455–465.

    Article  MathSciNet  MATH  Google Scholar 

  4. Braden, H.W., Gorsky, A., Odesskii, A., and Rubtsov, V., Double-Elliptic Dynamical Systems from Generalized Mukai–Sklyanin Algebras, Nuclear Phys. B, 2002, vol. 633, no. 3, pp. 414–442.

    Article  MathSciNet  MATH  Google Scholar 

  5. Braden, H.W., Marshakov, A., Mironov, A., and Morozov, A., On Double-Elliptic Integrable Systems: 1. A Duality Argument for the Case of SU(2), Nuclear Phys. B, 2000, vol. 573, nos. 1–2, pp. 553–572.

    Article  MathSciNet  MATH  Google Scholar 

  6. Laurent-Gengoux, C., Pichereau, A., and Vanhaecke, P., Poisson Structures, Grundlehren Math. Wiss., vol. 347, Heidelberg: Springer, 2013.

    Book  MATH  Google Scholar 

  7. Cushman, R.H. and Bates, L.M., Global Aspects of Classical Integrable Systems, 2nd ed., Basel: Birkhäuser, 2015.

    Book  MATH  Google Scholar 

  8. Damianou, P.A., Nonlinear Poisson Brackets, PhD Thesis, Univ. of Arizona, Tucson, 1989, 107 pp.

    Google Scholar 

  9. Damianou, P.A., Transverse Poisson Structures of Coadjoint Orbits, Bull. Sci. Math., 1996, vol. 120, no. 2, pp. 195–214.

    MathSciNet  MATH  Google Scholar 

  10. Damianou, P.A., Sabourin, H., and Vanhaecke, P., Transverse Poisson Structures to Adjoint Orbits in Semisimple Lie Algebras, Pacific J. Math., 2007, vol. 232, no. 1, pp. 111–138.

    Article  MathSciNet  MATH  Google Scholar 

  11. Dragović, V. and Gajić, B., On the Cases of Kirchhoff and Chaplygin of the Kirchhoff Equations, Regul. Chaotic Dyn., 2012, vol. 17, no. 5, pp. 431–438.

    Article  MathSciNet  MATH  Google Scholar 

  12. Dubrovin, B.A., Theta-Functions and Nonlinear Equations, Russian Math. Surveys, 1981, vol. 36, no. 2, pp. 11–92; see also: Uspekhi Mat. Nauk, 1981, vol. 36, no. 2(218), pp. 11–80.

    Article  MathSciNet  MATH  Google Scholar 

  13. Fairlie, D.B., An Elegant Integrable System, Phys. Lett. A, 1987, vol. 119, no. 9, pp. 438–440.

    Article  MathSciNet  Google Scholar 

  14. Grabowski, J., Marmo, G., and Perelomov, A.M., Poisson Structures: Towards a Classification, Modern Phys. Lett. A, 1993, vol. 8, no. 18, pp. 1719–1733.

    Article  MathSciNet  MATH  Google Scholar 

  15. Joswig, M. and Theobald, Th., Polyhedral and Algebraic Methods in Computational Geometry, London: Springer, 2013.

    Book  MATH  Google Scholar 

  16. Meyer, K. R., Jacobi Elliptic Functions from a Dynamical Systems Point of View, Amer. Math. Monthly, 2001, vol. 108, no. 8, pp. 729–737.

    Article  MathSciNet  MATH  Google Scholar 

  17. Nambu, Y., Generalized Hamiltonian Dynamics, Phys. Rev. D (3), 1973, vol. 7, pp. 2405–2412.

    Article  MathSciNet  MATH  Google Scholar 

  18. Odesskii, A.V. and Rubtsov, V.N., Polynomial Poisson Algebras with a Regular Structure of Symplectic Leaves, Theoret. and Math. Phys., 2002, vol. 133, no. 1, pp. 1321–1337; see also: Teoret. Mat. Fiz., 2002, vol. 133, no. 1, pp. 3–23.

    Article  MathSciNet  MATH  Google Scholar 

  19. Perelomov, A. M., Some Remarks on the Integrability of the Equations of Motion of a Rigid Body in an Ideal Fluid, Funct. Anal. Appl., 1981, vol. 15, no. 2, pp. 144–146; see also: Funktsional. Anal. i Prilozhen, 1981, vol. 15, no. 2, pp. 83–85.

    Article  MathSciNet  MATH  Google Scholar 

  20. Sklyanin, E.K., Some Algebraic Structures Connected with the Yang–Baxter Equation, Funct. Anal. Appl., 1982, vol. 16, no. 4, pp. 263–270; see also: Funktsional. Anal. i Prilozhen., 1982, vol. 16, no. 4, pp. 27–34, 96.

    Article  MathSciNet  MATH  Google Scholar 

  21. Takhtajan, L., On Foundation of the Generalized Nambu Mechanics, Comm. Math. Phys., 1994, vol. 160, no. 2, pp. 295–315.

    Article  MathSciNet  MATH  Google Scholar 

  22. Vanhaecke, P., Integrable Systems in the Realm of Algebraic Geometry, 2nd ed., Lect. Notes Math., vol. 1638, Berlin: Springer, 2001.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pantelis A. Damianou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Damianou, P.A. Poisson Brackets after Jacobi and Plücker. Regul. Chaot. Dyn. 23, 720–734 (2018). https://doi.org/10.1134/S1560354718060072

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560354718060072

Keywords

MSC2010 numbers

Navigation