Skip to main content
Log in

Singular sets of planar hyperbolic billiards are regular

  • Published:
Regular and Chaotic Dynamics Aims and scope Submit manuscript

Abstract

Many planar hyperbolic billiards are conjectured to be ergodic. This paper represents a first step towards the proof of this conjecture. The Hopf argument is a standard technique for proving the ergodicity of a smooth hyperbolic system. Under additional hypotheses, this technique also applies to certain hyperbolic systems with singularities, including hyperbolic billiards. The supplementary hypotheses concern the subset of the phase space where the system fails to be C 2 differentiable. In this work, we give a detailed proof of one of these hypotheses for a large collection of planar hyperbolic billiards. Namely, we prove that the singular set and each of its iterations consist of a finite number of compact curves of class C 2 with finitely many intersection points.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bunimovich, L.A., On Billiards Close to Dispersing, Mat. Sb., 1974, vol. 94(136), no. 1(5), pp. 49–73 [Sb. Math., 1974, vol. 23, no. 1, pp. 45–67].

    Google Scholar 

  2. Bunimovich, L.A., On the Ergodic Properties of Nowhere Dispersing Billiards, Comm. Math. Phys., 1979, vol. 65, no. 3, pp. 295–312.

    Article  MathSciNet  MATH  Google Scholar 

  3. Bunimovich, L.A., A Theorem on Ergodicity of Two-Dimensional Hyperbolic Billiards, Comm. Math. Phys., 1990, vol. 130, no. 3, pp. 599–621.

    Article  MathSciNet  MATH  Google Scholar 

  4. Bunimovich, L.A., On Absolutely Focusing Mirrors, in Ergodic Theory and Related Topics, III (Güstrow, 1990), Lecture Notes in Math., vol. 1514, Berlin: Springer, 1992, pp. 62–82.

    Chapter  Google Scholar 

  5. Bunimovich, L.A. and Del Magno, G., Track Billiards, Comm. Math. Phys., 2009, vol. 288, no. 2, pp. 699–713.

    Article  MathSciNet  MATH  Google Scholar 

  6. Bussolari, L. and Lenci, M., Hyperbolic Billiards with Nearly Flat Focusing Boundaries: 1, Phys. D, 2008, vol. 237, no. 18, pp. 2272–2281.

    Article  MathSciNet  MATH  Google Scholar 

  7. Chernov, N. and Markarian, R., Chaotic Billiards, Math. Surveys Monogr., vol. 127, Providence, RI: AMS, 2006.

    MATH  Google Scholar 

  8. Chernov, N. and Markarian, R., Dispersing Billiards with Cusps: Slow Decay of Correlations, Comm. Math. Phys., 2007, vol. 270, no. 3, pp. 727–758.

    Article  MathSciNet  MATH  Google Scholar 

  9. Chernov, N. and Troubetzkoy, S., Ergodicity of Billiards in Polygons with Pockets, Nonlinearity, 1998, vol. 11, no. 4, pp. 1095–1102.

    Article  MathSciNet  MATH  Google Scholar 

  10. Del Magno, G., Ergodicity of a Class of Truncated Elliptical Billiards, Nonlinearity, 2001, vol. 14, no. 6, pp. 1761–1786.

    Article  MathSciNet  MATH  Google Scholar 

  11. Del Magno, G. and Markarian, R., Bernoulli Elliptical Stadia, Comm. Math. Phys., 2003, vol. 233, no. 2, pp. 211–230.

    MathSciNet  MATH  Google Scholar 

  12. Del Magno, G. and Markarian, R., A Local Ergodic Theorem Non-Uniformly Hyperbolic Symplectic Maps with Singularities, Ergodic Theory Dynam. Systems, 2013, vol. 33, no. 4, pp. 983–1007.

    Article  Google Scholar 

  13. Donnay, V. J., Using Integrability to Produce Chaos: Billiards with Positive Entropy, Comm. Math. Phys., 1991, vol. 141, no. 2, pp. 225–257.

    Article  MathSciNet  MATH  Google Scholar 

  14. Gallavotti, G. and Ornstein, D. S., Billiards and Bernoulli Schemes, Comm. Math. Phys., 1974, vol. 38, pp. 83–101.

    Article  MathSciNet  MATH  Google Scholar 

  15. Hopf, E., Statistik der geodätischen Linien inMannigfaltigkeiten negativer Krümmung, Ber. Verh. Sächs. Akad. Wiss. Leipzig, 1939, vol. 91, pp. 261–304.

    MathSciNet  Google Scholar 

  16. Katok, A., Strelcyn, J.-M., Ledrappier, F., and Przytycki, F., Invariant Manifolds, Entropy and Billiards; Smooth Maps with Singularities, Lecture Notes in Math., vol. 1222, Berlin: Springer, 1986.

    MATH  Google Scholar 

  17. Lazutkin, V. F., KAM Theory and Semiclassical Approximations to Eigenfunctions, Ergeb. Math. Grenzgeb. (3), vol. 24, Berlin: Springer, 1993.

    Google Scholar 

  18. Liverani, C. and Wojtkowski, M.P., Ergodicity in Hamiltonian Systems, in Dynamics Reported, Dynam. Report. Expositions Dynam. Systems (N. S.), vol. 4, Berlin: Springer, 1995, pp. 130–202.

    Google Scholar 

  19. Markarian, R., Billiards with Pesin Region of Measure One, Comm. Math. Phys., 1988, vol. 118, no. 1, pp. 87–97.

    Article  MathSciNet  MATH  Google Scholar 

  20. Markarian, R., New Ergodic Billiards: Exact Results, Nonlinearity, 1993, vol. 6, no. 5, pp. 819–841.

    Article  MathSciNet  MATH  Google Scholar 

  21. Sinai, Ya.G., Dynamical Systems with Elastic Reflections. Ergodic Properties of Dispersing Billiards, Uspekhi Mat. Nauk, 1970, vol. 25, no. 2, pp. 141–192 [Russian Math. Surveys, 1970, vol. 25, no. 2, pp. 137–189].

    MathSciNet  MATH  Google Scholar 

  22. Szász, D., On the K-Property of Some Planar Hyperbolic Billiards, Comm. Math. Phys., 1992, vol. 145, no. 3, pp. 595–604.

    Article  MathSciNet  MATH  Google Scholar 

  23. Wojtkowski, M., Principles for the Design of Billiards with Nonvanishing Lyapunov Exponents, Comm. Math. Phys., 1986, vol. 105, no. 3, pp. 391–414.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianluigi Del Magno.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Del Magno, G., Markarian, R. Singular sets of planar hyperbolic billiards are regular. Regul. Chaot. Dyn. 18, 425–452 (2013). https://doi.org/10.1134/S1560354713040072

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560354713040072

MSC2010 numbers

Keywords

Navigation