Skip to main content
Log in

Short Review of Interaction Effects in Graphene

  • PHYSICS OF SOLID STATE AND CONDENSED MATTER
  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

We review field theoretical studies dedicated to understanding the effects of electron-electron interaction in graphene, which is characterized by gapless bands, strong electron-electron interactions, and emerging Lorentz invariance deep in the infrared. We consider the influence of interactions on the transport properties of the system as well as their supposedly decisive influence on the potential dynamical generation of a gap.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Usually the BPHZ procedure leads to the local form of singularities of Feynman diagrams, i.e. to their independence from external momenta (see, e.g., [9]). The case of the optical conductivity is rather unusual, since the singularity of the subgraph (i.e. \(1{\text{/}}\varepsilon \) in dimensional regularization) is compensated by the contribution \( \sim \varepsilon \) of the second integration. So, the two-loop result for \(\mathcal{C}_{1}^{{({\text{bare}})}}\) is finite (\( = (11 - 3\pi )/6\)). But since the subgraph is singular, \(\mathcal{C}_{1}^{{({\text{bare}})}}\) should be supplemented with a counter-term related to subgraph renormalization. The corresponding pole is also compensated by the contribution \( \sim \varepsilon \) from the integration of the remainder. Thus, this additional contribution is also finite (\( = 1{\text{/}}4\)) and must be subtracted from the results of calculating the two-loop diagrams as shown in Eq. (4).

REFERENCES

  1. G. W. Semenoff, “Condensed matter simulation of a three-dimensional anomaly,” Phys. Rev. Lett. 53, 2449 (1984).

    Article  ADS  Google Scholar 

  2. J. González, F. Guinea, and M. A. H. Vozmediano, “NonFermi liquid behavior of electrons in the half-filled honeycomb lattice (a renormalization group approach),” Nucl. Phys. A 424, 595 (1994).

    Article  Google Scholar 

  3. A. V. Kotikov and S. Teber, “Multi-loop techniques for massless Feynman diagram calculations,” Phys. Part. Nucl. 50, 1–41 (2019).

    Article  Google Scholar 

  4. V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, “Unusual microwave response of Dirac quasiparticles in graphene,” Phys. Rev. Lett. 96, 256802 (2006);

    Article  ADS  Google Scholar 

  5. V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, “On the universal ac optical background in graphene,” New J. Phys. 11, 095013 (2009).

    Article  ADS  Google Scholar 

  6. S. Teber and A. V. Kotikov, “Interaction corrections to the minimal conductivity of graphene via dimensional regularization,” Europhys. Lett. 107, 57001 (2014);

    Article  ADS  Google Scholar 

  7. S. Teber and A. V. Kotikov, “The method of uniqueness and the optical conductivity of graphene: new application of a powerful technique for multi-loop calculations,” Theor. Math. Phys. 190, 446 (2017);

    Article  MATH  Google Scholar 

  8. S. Teber and A. V. Kotikov, “Field theoretic renormalization study of interaction corrections to the universal ac conductivity of graphene,” J. High Energy Phys. 1807, 082 (2018).

  9. S. Teber, “Field theoretic study of electron-electron interaction effects in Dirac liquids,” Habilitation, Sorbonne Univ. (2017). arXiv:1810.08428 [cond-mat.mes-hall].

  10. E. Fradkin, “Critical behavior of disordered degenerate semiconductors. II. Spectrum and transport properties in mean-field theory,” Phys. Rev. B 33, 3263 (1986);

    Article  ADS  Google Scholar 

  11. P. A. Lee, “Localized states in a D-Wave superconductor,” Phys. Rev. Lett. 71, 1887 (1987);

    Article  ADS  Google Scholar 

  12. A. W. W. Ludwig, M. P. A. Fisher, R. Shankar, and G. Grinstein, “Integer quantum Hall transition: an alternative approach and exact results,” Phys. Rev. 50, 7526 (1994).

    Article  ADS  Google Scholar 

  13. N. N. Bogoliubov and O. S. Parasiuk, “On the multiplication of the causal function in the quantum theory of fields,” Acta Math. 97, 227 (1957);

    MathSciNet  Google Scholar 

  14. K. Hepp, “Proof of the Bogoliubov-Parasiuk theorem on renormalization,” Commun. Math. Phys. 2, 301 (1966);

    Article  ADS  MATH  Google Scholar 

  15. W. Zimmermann, “Convergence of Bogoliubov’s method of renormalization in momentum space,” Commun. Math. Phys. 15, 208 (1969).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. A. V. Kotikov, “Some examples of calculation of massless and massive Feynman integrals,” Particles 4, 361 (2021).

    Article  Google Scholar 

  17. E. G. Mishchenko, “Minimal conductivity in graphene: interaction corrections and ultraviolet anomaly,” Europhys. Lett. 83, 17005 (2008).

    Article  ADS  Google Scholar 

  18. A. V. Kotikov and S. Teber, “Critical behaviour of reduced QED and dynamical fermion gap generation in graphene,” Phys. Rev. D 94, 114010 (2016).

    Article  ADS  Google Scholar 

  19. M. S. Nevius et al., “Semiconducting graphene from highly ordered substrate interactions,” Phys. Rev. Lett. 115, 136802 (2015).

    Article  ADS  Google Scholar 

  20. S. Teber, “Electromagnetic current correlations in reduced quantum electrodynamics,” Phys. Rev. D 86, 025005 (2012);

    Article  ADS  Google Scholar 

  21. A. V. Kotikov and S. Teber, “Note on an application of the method of uniqueness to reduced quantum electrodynamics,” Phys. Rev. D 87, 087701 (2013);

    Article  ADS  Google Scholar 

  22. A. V. Kotikov and S. Teber, “Two-loop fermion self-energy in reduced quantum electrodynamics and application to the ultrarelativistic limit of graphene,” Phys. Rev. D 89, 065038 (2014);

    Article  ADS  Google Scholar 

  23. A. V. Kotikov and S. Teber, “Field theoretic renormalization study of reduced quantum electrodynamics and applications to the ultrarelativistic limit of Dirac liquids,” Phys. Rev. D 97, 074004 (2018).

    Article  ADS  Google Scholar 

  24. R. D. Pisarski, “Chiral symmetry breaking in three-dimensional electrodynamics,” Phys. Rev. D 29, 2423 (1984);

    Article  ADS  Google Scholar 

  25. T. Appelquist, D. Nash, and L. C. R. Wijewardhana, “Critical behavior in (2+1)-dimensional QED,” Phys. Rev. Lett. 60, 2575 (1988);

    Article  ADS  MathSciNet  Google Scholar 

  26. D. Nash, “Higher order corrections in (2+1)-dimensional QED,” Phys. Rev. Lett. 62, 3024 (1989);

    Article  ADS  Google Scholar 

  27. A. V. Kotikov, “Critical behavior of 3D electrodynamics,” JETP Lett. 58, 731 (1993);

    ADS  Google Scholar 

  28. A. V. Kotikov, “On the critical behavior of (2+1)-dimensional QED,” Phys. Atom. Nucl. 75, 890 (2012).

    Article  ADS  Google Scholar 

  29. A. V. Kotikov, V. I. Shilin, and S. Teber, “Critical behaviour of (2+1)-dimensional QED: 1/N f corrections in the Landau gauge,” Phys. Rev. D 94, 056009 (2016);

    Article  ADS  MathSciNet  Google Scholar 

  30. A. V. Kotikov and S. Teber, “Critical behavior of (2+1)-dimensional QED: 1/N f corrections in an arbitrary nonlocal gauge, Phys. Rev. D 94, 114011 (2016); A. V. Kotikov and S. Teber, “Critical behavior of (2+1)-dimensional QED: 1/N expansion,” Particles 3, 345–354 (2020).

    Article  Google Scholar 

  31. V. P. Gusynin and P. K. Pyatkovskiy, “Critical number of fermions in three-dimensional QED,” Phys. Rev. D 94, 125009 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  32. S. Teber and A. V. Kotikov, “Review of electron-electron interaction effects in planar Dirac liquids,” Theor. Math. Phys 200, 1222–1236 (2019).

    Article  MATH  Google Scholar 

Download references

ACKNOWLEDGMENTS

The author is grateful to Sofian Teber for help in preparing the paper. He also thanks the Organizing Committee of the International Conference “Modern problems of condensed matter theory” for the invitation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Kotikov.

Ethics declarations

The author declares that he has no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kotikov, A.V. Short Review of Interaction Effects in Graphene. Phys. Part. Nuclei Lett. 20, 1108–1110 (2023). https://doi.org/10.1134/S1547477123050461

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1547477123050461

Navigation