Skip to main content
Log in

Effect of Na+ Ions on the Mechanical Properties of Lithium Aluminosilicate Glass

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

A series of lithium aluminosilicate glasses with the composition of 70SiO2–10Al2O3–5K2O–15Li2O–xNaCl (x = 0.5, 1.5, 2.5, 3.5 and 4.5 wt %) were prepared by the melt-quenching method. The effect of NaCl addition on mechanical properties was assessed. It was found that both the glass density and the hardness decreased with increasing content of NaCl from 0.5 to 3.5 wt %. Interestingly, Vickers hardness of the glass increased when NaCl content increased by 4.5 wt %. Raman test results show that NBO/T in the glass increases with NaCl, that is, the decrease of the degree of polymerization of the glass network due to the breaking of Si–O–Si bonds. Since the Si–O–Si covalent bond is the strongest bond in the silicate glass, the glass structure tends to be depolymerized, and the density and Vickers hardness decrease. Thus, we attribute the hardness increasing at 4.5 wt % NaCl addition to the fact that Na+ enters the network pores acting as network modifier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. Zanotto, E.D., A bright future for glass-ceramics, Am. Ceram. Soc. Bull., 2010. vol. 89, no. 8, pp. 19–27.

    CAS  Google Scholar 

  2. Lee, D., Joo, S.-H., and Shin, D.J., Recovery of Li from lithium aluminum silicate (LAS) glass-ceramics after heat treatment at 1000°C and Ca salt-assisted water leaching in two stages before and after calcination at 600°C, Hydrometallurgy, 2022, vol. 211, p. 105876. https://doi.org/10.1016/j.hydromet.2022.105876

    Article  CAS  Google Scholar 

  3. Zhang, J., Huang, J., Yu, Y., Zhang, Z., Bai, H., and Huang, Y., Effect of substitution of ZrO2 by SnO2 on crystallization and properties of environment-friendly Li2O–Al2O3–SiO2 system (LAS) glass-ceramics, Ceram. Int., 2022, vol. 48, no. 15, pp. 21355–21361. https://doi.org/10.1016/j.ceramint.2022.04.101

    Article  CAS  Google Scholar 

  4. Zhang, R., Yi, L., Kong, F., Liang, X., Yin, Z., Rao, Y., Wang, D., Chen, Z., Yu, X., Jiang, H., and Li, C., Rapid preparation of low thermal expansion transparent LAS nanocrystalline glass by one-step thermoelectric treatment, Ceram. Int., 2021, vol. 47, no. 24, pp. 34 380–34 387. https://doi.org/10.1016/j.ceramint.2021.08.350

    Article  CAS  Google Scholar 

  5. Lee, D., Joo, S.-H., Shin, D.J., and Shin, S.M., Enhancement of leaching efficiency for Li by phase transformation from lithium aluminum silicate (LAS) glass-ceramics, Hydrometallurgy, 2022, vol. 208, p. 105781. https://doi.org/10.1016/j.hydromet.2021.105781

    Article  CAS  Google Scholar 

  6. Şabikoglu, İ., Determination of optical and structural properties of lithium silicate ceramics with different ratios of Sm doped, Adv. Powder Technol., 2022, vol. 33, no. 8, p. 103685. https://doi.org/10.1016/j.apt.2022.103685

    Article  CAS  Google Scholar 

  7. Zeng, L., Huang, S.J., and Lin, H.J., Effects of mixed alkali effect on the structure and thermal expansion properties of Li2O–Al2O3–SiO2 glasses, Am. Ceram. Soc. Bull., 2021, vol. 40, no. 11, pp. 3813–3821.

    Google Scholar 

  8. Guo, Y., Li, J., Zhang, Y., Feng, S., and Sun, H., High-entropy R2O3–Y2O3–TiO2–ZrO2–Al2O3 glasses with ultrahigh hardness, Young’s modulus, and indentation fracture toughness, iScience, 2021, vol. 24, no. 7, p. 102735. https://doi.org/10.1016/j.isci.2021.102735

  9. Guo, X., Zhang, L., and Yang, H., Effects of Li replacement on the nucleation, crystallization and microstructure of Li2O–Al2O3–SiO2 glass, J. Non-Cryst. Solids, 2008, vol. 354, no. 34, pp. 4031–4036. https://doi.org/10.1016/j.jnoncrysol.2008.05.013

    Article  CAS  Google Scholar 

  10. Subhashini, Shashikala, H.D., and Udayashankar, N.K., Investigation of mixed alkali effect on mechanical, structural and thermal properties of three–alkali borate glass system, J. Alloys Compd., 2016, vol. 658, pp. 996–1002. https://doi.org/10.1016/j.jallcom.2015.11.014

    Article  CAS  Google Scholar 

  11. Kolay, S. and Bhargava, P., Role of MgO in lowering glass transition temperature and increasing hardness of lithium silicate glass and glass-ceramics, Ceram. Int., 2022, vol. 48, no. 9, pp. 12699–12711. https://doi.org/10.1016/j.ceramint.2022.01.139

    Article  CAS  Google Scholar 

  12. Lai, Y., Gu, F., Yu, J., and He, H., Environment dependence of hardness and fracture toughness of soda lime silica glass in humid and liquid conditions, J. Non-Cryst. Solids, 2021, vol. 569, p. 120985. https://doi.org/10.1016/j.jnoncrysol.2021.120985

    Article  CAS  Google Scholar 

  13. Hu, Y., Shao, X., Wang, Z., Xu, X., Han, X., Tao, H., and Yue, Y., BaAl2Si2O8 polymorphs and a novel reversible transition of BaAlF5 in supercooled oxyfluoride aluminosilicate liquids, J. Eur. Ceram. Soc., 2021, vol. 41, no. 14, pp. 7282–7287. https://doi.org/10.1016/j.jeurceramsoc.2021.07.021

    Article  CAS  Google Scholar 

  14. Peng, X., Pu, Y., and Du, X., Effect of K2O addition on glass structure, complex impedance and energy storage density of NaNbO3 based glass–ceramics, J. Alloys Compd., 2019, vol. 785, pp. 350–355. https://doi.org/10.1016/j.jallcom.2019.01.201

    Article  CAS  Google Scholar 

  15. Kurtulus, R., Kurtulus, C., and Kavas, T., Nuclear radiation shielding characteristics and physical, optical, mechanical, and thermal properties of lithium-borotellurite glass doped with Rb2O, Prog. Nucl. Energ., 2021, vol. 141, p. 103961. https://doi.org/10.1016/j.pnucene.2021.103961

    Article  CAS  Google Scholar 

  16. Wang, K., Wang, W., Mao, G., Li, Z., Dai, S., Xu, T., and Chen, F., Modification of crystallization behavior, mechanical strength and optical property of Ge–S binary chalcogenide glass ceramics by trace CsCl incorporation, Ceram. Int., 2022, vol. 48, no. 18, pp. 25781–25787. https://doi.org/10.1016/j.ceramint.2022.05.250

    Article  CAS  Google Scholar 

  17. Thongyoug, P., Tungtrongpairoj, J., and Sooksaen, P., Effects of reinforcements on the hardness of composite seal rings, Mater. Today, 2022, vol. 52, no. 2, pp. 2377–2380.

    CAS  Google Scholar 

  18. Shan, Z., Zhang, Y., Liu, S., Tao, H., and Yue, Y., Mixed-alkali effect on hardness and indentation-loading behavior of a borate glass system, J. Non-Cryst. Solids, 2020, vol. 548, p. 120314. https://doi.org/10.1016/j.jnoncrysol.2020.120314

    Article  CAS  Google Scholar 

  19. Smedskjaer, M.M., Jensen, M., and Yue, Y., Effect of thermal history and chemical composition on hardness of silicate glasses, J. Non-Cryst. Solids, 2010, vol. 356, nos. 18–19, pp. 893–897. https://doi.org/10.1016/j.jnoncrysol.2009.12.030

    Article  ADS  CAS  Google Scholar 

  20. Hu, Y., Zhang, X., Zhou, D., Jiao, Q., Wang, R., Huang, J., Long, X., and Qiu, X., Effect of bivalent alkaline earth fluorides introduction on thermal stability and spectroscopic properties of Er3+/Tm3+/Yb3+ co-doped oxyfluorogermanate glasses, Spectrosc. Spectral Anal., 2012, vol. 32, no. 1, pp. 56–60. https://doi.org/10.3964/j.issn.1000-0593(2012)01-0056-05

    Article  CAS  Google Scholar 

  21. Larink, D., Eckert, H., Reichert, M.D., and Martin, S.W., Mixed network former effect in ion-conducting alkali borophosphate glasses: Structure/property correlations in the system [M2O]1/3[(B2O3)x(P2O5)1 – x]2/3 (M = Li, K, Cs), J. Phys. Chem. C, 2012, vol. 116, no. 50, pp. 26 162–26 176. https://doi.org/10.1021/jp307085t

    Article  CAS  Google Scholar 

  22. Hou, Y., Zhang, G.-H., and Chou, K.-C., Mixed alkali effect in SiO2–CaO–Al2O3–TiO2–R2O (R = Li, Na) glass ceramics, J. Alloys Compd., 2021, vol. 856, p. 158239. https://doi.org/10.1016/j.jallcom.2020.158239

    Article  CAS  Google Scholar 

  23. Januchta, K., Stepniewska, M., Jensen, L.R., Zhang, Y., Somers, M.A.J., Bauchi, M., Yue, Y., and Smedskjaer, M.M., Breaking the limit of micro-ductility in oxide glasses, Adv. Sci., 2019, vol. 18, no. 6, p. 1901281.https://doi.org/10.1002/advs.201901281

  24. Musen, B.O., Finger, L.W., Virgo, D., and Seifert, F.A., Curve-fitting of Raman spectra of silicate glasses, Am. Mineral., 1982, vol. 67, pp. 686–695.

    ADS  Google Scholar 

  25. Shi, C., Corrosion of glasses and expansion mechanism of concrete containing waste glasses as aggregates, J. Mater. Civ. Eng., 2009, vol. 21, no. 10, pp. 529–534. https://doi.org/10.1061/(ASCE)0899-1561(2009)21:10(529)

    Article  CAS  Google Scholar 

  26. Xing, D., Xi, X.-Y., and Ma, P.-C., Factors governing the tensile strength of basalt fibre, Composites, Part A, 2019, vol. 119, pp. 127–133. https://doi.org/10.1016/j.compositesa.2019.01.027

    Article  CAS  Google Scholar 

  27. Shan, Z., Liu, S., and Tao, H., Mixed alkaline-earth effect on the mechanical and rheological properties of Ca–Mg silicate glasses, J. Am. Ceram. Soc., 2017, vol. 100, no. 10, pp. 4570–4580. https://doi.org/10.1111/jace.14999

    Article  CAS  Google Scholar 

  28. McMillan, P., Piriou, B., and Navrotsky, A., A Raman spectroscopic study of glasses along the joins silica–calcium aluminate, silica–sodium aluminate, and silica–potassium aluminate, Geochim. Cosmochim. Acta, 2021, vol. 46, no. 11, pp. 2021–2037. https://doi.org/10.1016/0016-7037(82)90182-X

    Article  ADS  Google Scholar 

  29. Daniel, I., Gillet, P., Poe, B., and McMillan, P.F., In-situ high-temperature Raman spectroscopic studies of aluminosilicate liquids, Phys. Chem. Miner., 1995, vol. 22, no. 2, pp. 74–86. https://doi.org/10.1007/BF00202467

    Article  ADS  CAS  Google Scholar 

Download references

Funding

This work is supported by China Building Material Federation Project (project no. 20221JBGS06-19), Beijing Municipal Science & Technology Commission, Administrative Commission of Zhongguancun Science Park (project no. Z221100006722022), and the National Natural Science Foundation of China (project no. 61368007).

Author information

Authors and Affiliations

Authors

Contributions

Yanhang Wang: Supervision, Data curation, Methodology, Investigation, Writing-original draft, Writing-review and editing, Validation. Lei Liu: Data curation, Methodology, Investigation, Writing-original draft, Writing-review and editing, Validation. Min Liu: Investigation, Writing-review & editing, Validation. Xianzi Li: Investigation, Writing-review and editing, Validation. Zhenyuan Zhang: Writing-review and editing. Jiayu Liu: Writing-review and editing. Xianying Shao: Investigation, Writing-original draft. Yuebo Hu: Supervision, Data curation, Methodology, Investigation, Writing-original draft, Writing-review and editing, Validation.

Corresponding author

Correspondence to Yanhang Wang.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yanhang Wang, Liu, L., Liu, M. et al. Effect of Na+ Ions on the Mechanical Properties of Lithium Aluminosilicate Glass. Glass Phys Chem 49 (Suppl 1), S86–S93 (2023). https://doi.org/10.1134/S108765962360076X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S108765962360076X

Keywords:

Navigation