Skip to main content
Log in

Ludwigite and Yuanfuliite from Fumarolic Exhalations of the Tolbachik Volcano, Kamchatka, Russia

  • MINERALS AND MINERAL PARAGENESES
  • Published:
Geology of Ore Deposits Aims and scope Submit manuscript

Abstract

This paper in focused on the data for ludwigite and yuanfuliite of the new fumarolic genetic type. These ferric–magnesian borates (oxoborates) have been found in exhalations of the Arsenatnaya fumarole at the Tolbachik volcano in Kamchatka. They occur in mineral assemblages formed at temperature above 550°С. Ludwigite is primarily associated with anhydrite, diopside, berzeliite–scháferite series minerals (garnet supergroup), tilasite, svabite, calciojohillerite, hematite and rhabdoborite-group minerals, whereas yuanfuliite is associated with hematite, forsterite, enstatite, diopside, fluorophlogopite, magnesioferrite, and spinel. The replacement of ludwigite by yuanfuliite was observed. Both oxoborates are represented by previously unknown chemical varieties, almost free of minor Fe2+, Al, and Ti. Ludwigite is enriched in Mn3+ up to composition (Mg2.05Cu0.01)2.06(\({\text{Fe}}_{{0.71}}^{{3 + }}{\text{Mn}}_{{0.29}}^{{3 + }}\) Cr0.01)1.01[B0.96O3]O2. Yuanfuliite is chemically very close to the ferric endmember of warwickite–yuanfuliite series and contains only minor Sn; its typical composition is Mg1.10\({\text{Fe}}_{{0.91}}^{{3 + }}\)Sn0.03[B0.98O3]O. The orthorhombic unit-cell parameters of ludwigite and yuanfuliite are: a = 9.297(6), b = 12.349(7), c = 3.021(2) Å, V = 346.5(4) Å3; and a = 9.30(4), b = 9.43(3), c = 3.051(13) Å, V = 268(2) Å3, respectively. Raman spectra of ludwigite with variable contents of admixtures, yuanfuliite, and warwickite are given and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. Aleksandrov, S.M., Geochemical peculiarities of the occurrences of endogenous borate mineralisation in Italy, Geokhimiya, 1974, vol. 10, pp. 1440–1449.

    Google Scholar 

  2. Aleksandrov, S.M., Magnesian-iron borates, their natural modifications and analogues, New Data on Minerals, 1976, vol. 25, pp. 3–26.

    Google Scholar 

  3. Aleksandrov, S.M., Geochemistry of Skarn and Ore Formation in Dolomites, Utrecht–Tokyo: VSP, 1998.

  4. Aleksandrov, S.M., Endogenous transformation of kotoite in calcifires of magnesian-skarn deposits of boron, Geochem. Int, 2007, vol. 5, no. 7, pp. 666–684.

    Article  Google Scholar 

  5. Aleksandrov, S.M. and Troneva, M.A., Heterovalent isomorphism in the magnesium-iron borates, Geochem. Int., 2008, vol. 46, no. 8, pp. 800–813.

    Article  Google Scholar 

  6. Aleksandrov, S.M. and Troneva, M.A., Composition and genesis of endogenous borates of Pitkyaranta ore field, Karelia, Geochem. Int., 2009, vol. 47, no. 9, pp. 914–929.

    Article  Google Scholar 

  7. Anthony, J.W., Bideaux, R.A., Bladh, K.W., and Nichols, M.C., Handbook of Mineralogy. Volume 5. Borates, Carbonates, Sulfates, Tucson: Mineral Data Publishing, 2003.

    Google Scholar 

  8. Appel, P.W.U., Al-rich warwickite from Inglefield Land, North-West Greenland, Mineral. Mag., 1997, vol. 61, pp. 693–698.

    Article  Google Scholar 

  9. Appel, P.W.U. and Brigatti, M.F., Ludwigite from Central Sweden: New data and crystal structure, Mineral. Mag., 1999, vol. 63, pp. 511–518.

    Article  Google Scholar 

  10. Appel, P.W.U., Bigi, S., and Brigatti, M.F., Crystal structure and chemistry of yuanfuliite and its relationships with warwickite, Eur. J. Mineral., 1999, vol. 11, pp. 483–491.

    Article  Google Scholar 

  11. Bachechi, F., Federico, M., and Fornaseri, M., La ludwigite e i minerali che l`accompagnane nelle geodi delle “pozzolane nere” di Corcolle (Tivoli, Colli Albani), Periodico di Mineralogica, 1966, vol. 35, no. 3, pp. 975–1006.

    Google Scholar 

  12. Bertaut, E.F., Bochirol, L., and Blum, P., Synthèse et groupes d’espace des boroferrites, Comptes Rendus de l’Académie des Sciences, 1950, vol. 230, no. 8, pp. 764–765.

    Google Scholar 

  13. Bigi, S., Brigatti, M.F., and Capedri, S., Crystal chemistry of Fe- and Crrich warwickite, Am. Mineral., 1991, vol. 76, pp. 1380–1388.

    Google Scholar 

  14. Bilohuščin, V., Uher, P., Koděra, P., Miloská, S., Mikuš, T., and Bačík, P., Evolution of borate minerals from contact metamorphic to hydrothermal stages: ludwigite-group minerals and szaibelyite from vysoka, Zlatno skarn, Slovakia. Mineral. Petrol., 2017, vol. 111, pp. 643–658.

    Article  Google Scholar 

  15. Bloise, A. and Barrese, E., Synthesis of isomorphic vonsenite–ludwigite series, Neues Jahrb. Mineral., 2009, vol. 186, no. 3, pp. 345–350.

    Google Scholar 

  16. Bonazzi, P. and Menchetti, S., Contribution to the crystal chemistry of the minerals of the ludwigite–vonsenite series, Neues Jahrb. Mineral., Monatshefte, 1989, no. 2, pp. 69–83.

  17. Bulakh, M.O., Pekov, I.V., Chukanov, N.V., Yapaskurt, V.O., Koshlyakova, N.N., Britvin, S.N., and Sidorov, E.G., Extremely fluorine-rich fluoborite from fumarolic exhalations of the Tolbachik volcano (Kamchatka), Zap. Ross. Mineral. O-va, 2021, vol. 50, no. 2, pp. 42–56.

    Google Scholar 

  18. Burragato, F., Ritrovamento di breislakite in bombe vulcaniche da una cava di pozzolana near del Volcano Laziale. Brevi notize di mineralogica Italiana, Periodico di Mineralogica, 1963, vol. 32, pp. 625–632.

    Google Scholar 

  19. Chaplygin, I.V., Yudovskaya, M.A., Pekov, I.V., Zubkova, N.V., Britvin, S.N., Vigasina, M.F., Puscharovsky, D.Yu., Belakovskiy, D.I., Griboedova, I.G., Kononkova, N.N., and Rassulov, V.A., Marinaite, IMA 2016-021. CNMNC Newsletter No 32, Mineral. Mag., 2016. Vol. 80. P. 917.

    Google Scholar 

  20. Chesnokov B.V., Bazhenova L.F., Shcherbakova E.P., Mikhal T.A., and Deryabina, T.N., New minerals from the burnt dumps of the Chelyabinsk coal basin. In: Mineralogiya tekhnogeneza i mineral’no-syr’evye kompleksy Urala (Mineralogy of Technogenesis and Mineral Raw Complexes of the Urals), Sverdlovsk, 1988, pp. 5–31.

  21. Ciriotti, M.E., Cámara, F., Grew, E., Sicurella, G., Cadoni, M., and Bittarello, E., Primo ritrovamento di boroferrite italiana: yuanfuliite di Biancavilla, Micro, 2016, vol. 14, no. (2), pp. 85–96.

  22. Cooper, M.A., Raade, G., Ball, N.A., Abdu, Y.A., Hawthorne, F.C., and Rowe, R., Folvikite, Sb5+Mn3+(Mg, Mn2+)10O8(BO3)4, a new oxyborate mineral from the Kitteln mine, Nordmark ore district, Varmland, Sweden: description and crystal structure. Mineral. Mag., 2018, vol. 82. P. 821–836.

    Article  Google Scholar 

  23. Enholm, Z., Mineral Chemistry and Paragenesis of Oxyborates in Metamorphosed Fe–Mn Oxide Deposits, Sweden, Uppsala: University, 2016.

    Google Scholar 

  24. Federico, M., Vonsenite nell Piperno di Pianura (Campi Flegrei, Napoli), Periodico di Mineralogica, 1969, vol. 38, no. 1, pp. 81–85.

    Google Scholar 

  25. Hawthorne, F.C., Burns, P.C., and Grice, J.D., The crystal chemistry of boron. In: Boron: Mineralogy, Petrology and Geochemistry, Rev. Mineral. Mineral Soc. Am., 1996, vol. 33, pp. 41–115.

    Google Scholar 

  26. Holstam, D., Crystal chemistry of a manganian ludwigite. neus jahrbuch fur mineralogy, Monatshefte, 2001, no. 11, pp. 520–528.

  27. Huang, Z. and Wang, P., Yuanfuliite—a new borate mineral, Acta Petrol. Mineral., 1994, vol. 13, no. (4), pp. 328–334.

  28. Huang, Z., Wang, P., and Ma, Z., Mineralogical new materials and crystal structure of yuanfuliite, J. Changchum Univ. Earth Sci., 1996, vol. 26, no. 1, pp. 17–23.

    Google Scholar 

  29. Irwin, M.B. and Peterson, R.C., The crystal structure of ludwigite, Can. Mineral, 1999, vol. 37, pp. 939–943.

    Google Scholar 

  30. Jan, M.Q. and Khan, M.A., Petrology of gem peridote from Sapat mafic-ultramafic complex, Kohistan, NW Himalaya, Geol. Bull. Univ. Peshawar, 1996, vol. 29, pp. 17–26.

    Google Scholar 

  31. Kononova, G.N., Gonchar, S.V., Dara, O.M., and Kolotyrkin, P.Ya., Phase transformations of iron-magnesium borates during heat treatment, Russ J. Inorg.Chem, 1987, vol. 32, no. 8, pp. 1986–1990.

    Google Scholar 

  32. Koshlyakova, N.N., Pekov, I.V., Zubkova, N.V., Agakhanov, A.A., Turchkova, A.G., Kartashov, P.M., Sidorov, E.G., and Puscharovsky, D.Yu., A new solid solution with the garnet structure: the berzeliite-shaferite isomorphous series from exhalations of the Tolbachik volcano, Kamchatka, Zap. Ross. Mineral. O-va, 2020, vol. 49, no. (6), pp. 69–84.

  33. Kravchuk, T.A., Nekrasov, I.Ya., and Grigoriev, A.P., Conditions for the formation of minerals of the ludwigite–vonsenite series according to experimental data, Zap. Vsesoyuz. Mineral. O-va, 1966, vol. 95, no. 3, pp. 272–286.

    Google Scholar 

  34. Leite, C.A.F., Guimaraes, R.B., Fernandes, J.C., Continentino, M.A., Paschoal, C.W.A., Ayala, A.P., and Guedes, I., Temperature-dependent Raman scattering study of Fe3O2BO3 ludwigite, J. Raman Spectroscop., 2002, vol. 33, pp. 1–5.

    Article  Google Scholar 

  35. Lupulescu, M.V., Ehlers, A.M., Hughes, J.M., and Bailey, D.G., Warwickite from st. lawrence county, New York: mineral association, chemical composition, cation ordering, and splitting of the waraickite M1 site, Can. Mineral., 2020, vol. 58, pp. 183–190.

    Article  Google Scholar 

  36. Malinko, S.V., Yamnova, N.A., Pushcharovsky, D.Yu., Lisitsyn, A.E., Rudnev, V.V., and Yurkina, K.V., Ferruginous warwickite from the Taezhnoye deposit (Southern Yakutia), Zap. Vsesoyuz. Mineral. O-va, 1986, vol. 115, no. 6, pp. 717–723.

    Google Scholar 

  37. Moore, P.B. and Araki, T., Pinakiolite, Mg2Mn3+O2 [BO3]; warwickite, Mg(Mg0.5Ti0.5)O[BO3] wightmanite, Mg5O(OH)5[BO3]·nH2O: crystal chemistry of complex 3Å wallpaper structures, Am. Mineral., 1974, vol. 59, nos. 9–10, pp. 985–1004.

    Google Scholar 

  38. Nakamoto, K., Infrared and Raman Spectra of Inorganic and Coordination Compounds. Part A, 6th Edition, New Jersey: Wiley & Sons, 2009.

    Google Scholar 

  39. Nekrasov, I.Ya., Grigoriev, A.P., Grigorieva, T.A., Brovkin, A.A., Diman, E.N., Novgorodov, P.G., Suk-nev, V.S., and Nikishova, L.V., Izuchenie vysokotemperaturnykh boratov (Study of High-Temperature Borates), Moscow: Nauka, 1970.

    Google Scholar 

  40. Norrestam, R., Dahl, S., and Bovin, J.-O., The crystal structure of magnesium–aluminium ludwigite Mg2.11Al0.31Fe0.53Ti0.05Sb0.01BO5, a combined single crystal X-ray and HREM study, Z. Krist., 1989, vol. 187, pp. 201–211.

    Article  Google Scholar 

  41. Pekov, I.V., Zubkova, N.V., Pautov, L.A., Yapaskurt, V.O., Chukanov, N.V., Lykova, I.S., Britvin, S.N., Sidorov, E.G., and Pushcharovsky, D.Yu., Chubarovite, KZn2 (BO3)Cl2, a new mineral species from the Tolbachik volcano, Kamchatka, Russia, Can. Mineral., 2015, vol. 53, no. 2, pp. 273–284.

    Article  Google Scholar 

  42. Pekov, I.V., Koshlyakova, N.N., Zubkova, N.V., Lykova, I.S., Britvin, S.N., Yapaskurt, V.O., Agakhanov, A.A., Shchipalkina, N.V., Turchkova, A.G., and Sidorov, E.G., Fumarolic arsenates—a special type of arsenic mineralization. Eur. J. Miner., 2018, vol. 30, no. 2, pp. 305–322.

    Article  Google Scholar 

  43. Pekov, I.V., Agakhanov, A.A., Zubkova, N.V., Koshlyakova, N.V., Shchipalkina, N.V., Sandalov, F.D., Yapaskurt, V.O., Turchkova, A.G., and Sidorov, E.G., Oxidizing-type fumaroles of the Tolbachik Volcano, a mineralogical and geochemical unique, Russ. Geol. Geophys., 2020, vol. 61, nos. 5–6, pp. 675–688.

  44. Pekov, I.V., Zubkova, N.N., Koshlyakova, N.N., Belakovskiy, D.I., Vigasina, M.F., Britvin, S.N., Sidorov, E.G., and Puscharovsky, D.Yu., Rhabdoborite-(V), rhabdoborite-(Mo) and rhabdoborite-(W): a new group of borate minerals with the general formula [(BO3)6 – x(PO4) xF2 – x] (M = V5+, Mo6+ or W6+ and x < 1), Eur. J. Mineral., 2020, vol. 32, pp. 101–119.

    Google Scholar 

  45. Pertsev, N.N., Paragenezisy bornykh mineralov magnezial’nykh skarnov (Boron Mineral Assemblages in Magnesian Skarns), Moscow: Nauka, 1971.

    Google Scholar 

  46. Rebollar, C.M., Minerales y Minas de Espana. Vol. 5. Carbonatos y Nitratos. Boratos, Escuela Técnica Superior de Ingenieros de Minas de Madrid. Fundación Gómez Pardo, 2012.

  47. Rudnev, V.V., Monoclinic iron-magnesium oxyborates of the hulsite isomorphic series, Zap. Ross. Mineral. O-va, 1996, vol. 125, no. 1, pp. 89–109.

    Google Scholar 

  48. Rudnev, V.V., Krivokoneva, G.K., Malinko, S.V., and Lisitsyn, A.E., New data on yanfuliite from South Yakutia and isomorphism in orthoborates of the warwickite-yuanfuliite group, Zap. Ross. Mineral. O-va, 2000, vol. 129, no. 3, pp. 86–98.

    Google Scholar 

  49. Russo, M. and Punzo, I., I minerali del Somma-Vesuvio, Cremona: AMI, 2004.

    Google Scholar 

  50. Russo, M., Zeolites from Campi Flegrei, Bollettino AIZ Series, Report., 2008, vol. 31, pp. 13–23.

    Google Scholar 

  51. Shaller, W.T. and Butler, B.S., Magnesioludwigite, a new mineral. J. Washington Acad. Sci., 1917, vol. 7, pp. 29–31.

    Google Scholar 

  52. Shchipalkina, N.V., Pekov, I.V., Koshlyakova, N.N., Britvin, S.N., Zubkova, N.V., Varlamov, D.A., and Sidorov, E.G., Unusual silicate mineralization in fumarolic sublimates of the Tolbachik volcano, Kamchatka, Russia. Part 1: Neso-, cyclo-, ino- And phyllosilicates, Eur. J. Mineral., 2020a, vol. 32, no. 1, pp. 101–119.

    Article  Google Scholar 

  53. Shchipalkina, N.V., Pekov, I.V., Koshlyakova, N.N., Britvin, S.N., Zubkova, N.V., Varlamov, D.A., and Sidorov, E.G., Unusual silicate mineralization in fumarolic sublimates of the Tolbachik volcano, Kamchatka, Russia, Unusual silicate mineralization in fumarolic sublimates of the Tolbachik volcano, Kamchatka, Russia. Part 2: Tectosilicates, Eur. J. Mineral., 2020b, vol. 32, no. 1, pp. 121–136.

    Article  Google Scholar 

  54. Shevko, A.Ya., Kalugin, V.M., Gora, M.P., and Karmanov, N.S., The First Find of Oxyborates in Rocks of the Norilsk-1 Intrusion (Northwestern Siberian Platform), Dokl. Earth Sci., 2019, vol. 488, no. 1, pp. 1100–1102.

    Article  Google Scholar 

  55. Symonds, R.B. and Reed, M.H., Calculation of multicomponent chemical equilibria in gas-solid-liquid systems: calculation methods, thermochemical data, and applications to studies of high-temperature volcanic gases with examples from Mount St. Helens, Am. J. Sci., 1993, vol. 293, pp. 758–864.

    Article  Google Scholar 

  56. Takeuchi, Y., Watanabe, T., and Ito, T., The crystal structure of warwikite, ludwigite and pinakiolite, Acta Crystal., 1950, vol. 3, pp. 98–107.

    Article  Google Scholar 

  57. The Great Tolbachik Fissure Eruption, Fedotov, S.A. and Markhinin, Y.K., Eds., New York: Cambridge University Press, 1983.

  58. Tolkanov, O.A., Chernobrovin, V.P., Muftalov, V.A., Khvorov, P.V., and Rechkalova, A.V., Chrome containing ludwigite in the chrome ore of Volchyegorskoe deposit (South Urals), Ural’sk. Geol. Zh., 2000, no. 4, pp. 155–161.

  59. Tschermak, G., Ludwigit, ein neues mineral aus dem banate, Mineral. Petrograph. Mitt., 1874, pp. 59–66.

    Book  Google Scholar 

  60. Turchkova, A.G., Pekov, I.V., Yapaskurt, V.O., Sidorov, E.G., and Britvin, S.N., Manganese mineralization in fumarole deposits at the Tolbachik volcano (Kamchatka, Russia). In: IX International symposium “Mineral Diversity: Research and Preservation”, Sofia, 2017, p. 9.

  61. Vergasova, L.P. and Filatov, S.K., A study of volcanogenic exhalation mineralization, J. Volcanol. Seismol., 2016, vol. 10, no. 2, pp. 71–85.

    Article  Google Scholar 

  62. Watanabe, T., On occurrence of warwikite at Hol Kol; a study of boron metasomatism, J. Faculty of Science, University of Tokyo, 1954, vol. 9, pp. 11–17.

    Google Scholar 

  63. Woodford, D.T., Sisson, V.B., and Leeman, W.P., Boron metasomatism of the Alta stock contact aureole, Utah: evidence from borates, mineral chemistry and geochemistry, Am. Mineral., 2001, vol. 86, pp. 513–533.

    Article  Google Scholar 

  64. Yamnova, N.A., Pushcharovsky, D.Yu., and Malinko, S.V., On the peculiarities of the cation distribution in the crystal structure of ferruginous warwickite, Crystallography, 1988, vol. 3, no. 2, pp. 349–352.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to V.O. Yapaslurt for his assistance in secondary electron imaging and M.F. Vigasina for discussion of the Raman spectra.

Funding

This study has been supported by the Russian Science Foundation (project no. 19-17-00050).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. O. Bulakh.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by I. Baksheev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bulakh, M.O., Pekov, I.V., Koshlyakova, N.N. et al. Ludwigite and Yuanfuliite from Fumarolic Exhalations of the Tolbachik Volcano, Kamchatka, Russia. Geol. Ore Deposits 64, 607–621 (2022). https://doi.org/10.1134/S1075701522080037

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1075701522080037

Keywords:

Navigation