Skip to main content
Log in

Synthesis and Properties of N,N′-Disubstituted Ureas and Their Isosteric Analogs Containing Polycyclic Fragments: XIV. N-[(Adamantan-1-yl)(phenyl)methyl]-N′-substituted Ureas and Symmetrical Bis-ureas

  • Published:
Russian Journal of Organic Chemistry Aims and scope Submit manuscript

Abstract

A procedure has been developed for the synthesis of rac-1-[isocyanato(phenyl)methyl]adamantane from rac-2-(adamantan-1-yl)-2-phenylacetic acid in 95% yield. The reactions of rac-1-[isocyanato(phenyl)­methyl]adamantane with aliphatic diamines and trans-4-[(4-aminocyclohexyl)oxy]benzoic acid afforded a series of N,N′-disubstituted ureas in 60–91% yields, and its hydrolysis in the presence of a catalytic amount of 1,8-diazabicyclo[5.4.0]undec-7-ene gave 94% of symmetrical N,N′-bis[(adamantan-1-yl)(phenyl)methyl]urea. The structure of rac-2-(adamantan-1-yl)-2-phenylacetic acid was confirmed by X-ray analysis of its single crystal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme
Scheme
Fig. 1.
Fig. 2.
Scheme
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Danilov, D.V., D’yachenko, V.S., Kuznetsov, Ya.P., Degtyarenko, E.K., Burmistrov, V.V., Butov, G.M., and Novakov, I.A., Russ. J. Org. Chem., 2021, vol. 57, p. 1913. https://doi.org/10.1134/S1070428021120034

    Article  CAS  Google Scholar 

  2. Hwang, S.H., Wecksler, A.T., Zhang, G., Morisseau, C., Nguyen, L.V., Fu, S.H., and Hammock, B.D., Bioorg. Med. Chem. Lett., 2013, vol. 23, p. 3732. https://doi.org/10.1016/j.bmcl.2013.05.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Shen, H.C., Expert Opin. Ther. Pat., 2010, vol. 20, p. 941. https://doi.org/10.1517/13543776.2010.484804

    Article  CAS  PubMed  Google Scholar 

  4. Dorrance, A.M., Rupp, N., Pollock, D.M., Newman, J.W., Hammock, B.D., and Imig, J.D., J. Cardiovasc. Pharmacol., 2005, vol. 46, p. 842. https://doi.org/10.1097/01.fjc.0000189600.74157.6d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Davis, B.B., Thompson, D.A., Howard, L.L., Morisseau, C., Hammock, B.D., and Weiss, R.H., Proc. Natl. Acad. Sci. U. S. A., 2002, vol. 99, p. 2222. https://doi.org/10.1073/pnas.261710799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lednicer, D., Heyd, W.E., Emmert, D.E., TenBrink, R.E., Schurr, P.E., and Day, C.E., J. Med. Chem., 1979, vol. 22, p. 69. https://doi.org/10.1021/jm00187a016

    Article  CAS  PubMed  Google Scholar 

  7. Abel, A.S., Averin, A.D., Buryak, A.K., Savelyev, E.N., Orlinson, B.S., Novakov, I.A., and Beletskaya, I.P., Synthesis, 2017, vol. 49, p. 5067. https://doi.org/10.1055/s-0036-1590860

    Article  CAS  Google Scholar 

  8. Novakov, I.A., Orlinson, B.S., Brunilin, R.V., Nawrozkij, M.B., Savel’ev, E.N., and Novikova, G.A., Chem. Heterocycl. Compd., 2006, vol. 42, p. 1331. https://doi.org/10.1007/s10593-006-0243-7

    Article  CAS  Google Scholar 

  9. Weigel, W.K. III, Dang, H.T., Yang, H.B., and Martin, D.B.C., Chem. Commun., 2020, vol. 56, p. 9699. https://doi.org/10.1039/D0CC02804E

    Article  Google Scholar 

  10. Sedenkova, K.N., Dueva, E.V., Averina, E.B., Grishin, Y.K., Osolodkin, D.I., Kozlovskaya, L.I., Palyulin, V.A., Savelyev, E.N., Orlinson, B.S., Nova­kov, I.A., Butov, G.M., Kuznetsova, T.S., Karga­nova, G.G., and Zefirov, N.S., Org. Biomol. Chem., 2015, vol. 13, p. 3406. https://doi.org/10.1039/c4ob02649g

    Article  CAS  PubMed  Google Scholar 

  11. Riganas, S., Papanastasiou, I., Foscolos, G.B., Tsotinis, A., Serin, G., Mirjolet, J.F., Dimas, K., Kourafalos, V.N., Eleutheriades, A., Moutsos, V.I., Khan, H., Georgakopoulou, S., Zaniou, A., Prassa, M., Theodoropoulou, M., Mantelas, A., Pondiki, S., and Vamvakides, A., J. Med. Chem., 2012, vol. 55, p. 10241. https://doi.org/10.1021/jm3013008

    Article  CAS  PubMed  Google Scholar 

  12. Hammock, B.D., McReynolds, C.B., Wagner, K., Buckpitt, A., Cortes-Puch, I., Croston, G., Lee, K.S.S., Yang, J., Schmidt, W.K., and Hwang, S.H., J. Med. Chem., 2021, vol. 64, p. 1856. https://doi.org/10.1021/acs.jmedchem.0c01886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Burmistrov, V.V., Danilov, D.V., D’yachenko, V.S., Rasskazova, E.V., and Butov, G.M., Russ. J. Org. Chem., 2020, vol. 56, p. 735. https://doi.org/10.1134/S1070428020050024

    Article  CAS  Google Scholar 

  14. Butov, G.M., Pershin, V.V., and Burmistrov, V.V., Russ. J. Org. Chem., 2011, vol. 47, p. 606. https://doi.org/10.1134/S1070428011040221

    Article  CAS  Google Scholar 

  15. Shteingolts, S.A., Stash, A.I., Tsirelson, V.G., and Fayzullin, R.R., Chem. Eur. J., 2021, vol. 27, p. 7789. https://doi.org/10.1002/chem.202005497

    Article  CAS  PubMed  Google Scholar 

  16. Burmistrov, V., Morisseau, C., Lee, K.S.S., Shihadih, D.S., Harris, T.R., Butov, G.M., and Hammock, B.D., Bioorg. Med. Chem. Lett., 2014, vol. 24, p. 2193. https://doi.org/10.1016/j.bmcl.2014.03.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Butov, G.M., Burmistrov, V.V., and D’yachenko, V.S., Russ. J. Org. Chem., 2017, vol. 57, p. 977. https://doi.org/10.1134/S107042801707003X

    Article  Google Scholar 

  18. Lipinski, S.A., Lombardo, F., Dominy, B.W., and Fee­ney, P.J., Adv. Drug Delivery Rev., 2001, vol. 46, p. 3. https://doi.org/10.1016/S0169-409X(00)00129-0

    Article  CAS  Google Scholar 

  19. Mokhov, V.M., Burmistrov, V.V., and Butov, G.M., Russ. J. Org. Chem., 2016, vol. 52, p. 1118. https://doi.org/10.1134/S1070428016080042

    Article  CAS  Google Scholar 

  20. Sheldrick, G.M., Acta Crystallogr., Sect. A, 2015, vol. 71, p. 3. https://doi.org/10.1107/S2053273314026370

    Article  CAS  Google Scholar 

  21. Sheldrick, G.M., Acta Crystallogr., Sect. C, 2015, vol. 71, p. 3. https://doi.org/10.1107/S2053229614024218

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The X-ray diffraction study was carried out using the equipment of the joint Spectral and Analytical Center (Kazan Scientific Center Federal Research Center, Russian Academy of Science).

Funding

This study was performed under financial support by the Russian Science Foundation (project no. 19-73-10002). The crystal structure of rac-2-(adamantan-1-yl)-2-phenylacetic acid was determined by R.R. Fayzullin in the framework of state assignment for Kazan Scientific Center Federal Research Center, Russian Academy of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. M. Butov.

Ethics declarations

The authors declare the absence of conflict of interest.

Additional information

Translated from Zhurnal Organicheskoi Khimii, 2022, Vol. 58, No. 3, pp. 235–247 https://doi.org/10.31857/S0514749222030028.

For communication XIII, see [1].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burmistrov, V.V., Mokhov, V.M., Danilov, D.V. et al. Synthesis and Properties of N,N′-Disubstituted Ureas and Their Isosteric Analogs Containing Polycyclic Fragments: XIV. N-[(Adamantan-1-yl)(phenyl)methyl]-N′-substituted Ureas and Symmetrical Bis-ureas. Russ J Org Chem 58, 259–267 (2022). https://doi.org/10.1134/S1070428022030022

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070428022030022

Keywords:

Navigation