Skip to main content
Log in

Circumambulatory Rearrangements of 5-Halo-1,2,3,4,5-pentaphenylcyclopentadienes

  • Published:
Russian Journal of Organic Chemistry Aims and scope Submit manuscript

Abstract

DFT quantum chemical calculations at the CAM-B3LYP/Def2TZVP level of theory showed that intramolecular migrations of halogens in 5-halo-1,2,3,4,5-pentaphenylcyclopentadienes (C5Ph5Hlg, Hlg = F, Cl, Br, I) involve chiral conformation of their molecules with a propeller arrangement of phenyl groups via 1,5-sigmatropic shifts around the five-membered ring through asymmetric transition states with energy barriers ΔEZPE of 42.5 (F), 26.2 (Cl), 20.2 (Br), and 15.2 kcal/mol (I). The results were consistent with the data of dynamic NMR spectroscopy. The P and M enantiomers are readily interconvertible (ΔEZPE = 1.7–3.7 kcal/mol) by way of synchronous flips of the phenyl groups. The calculated barriers to alternative 1,3-halogen shifts in C5Ph5Hlg are considerably higher than those for 1,5-shifts: ΔEZPE = 60.7 (F), 38.6 (Cl), 32.0 (Br), and 27.9 kcal/mol (I).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme
Fig. 1.
Scheme
Fig. 2.
Fig. 3.
Scheme
Fig. 4.
Scheme

Similar content being viewed by others

REFERENCES

  1. Field, L.D., Lindall, C.M., Masters, A.F., and Clentsmith, G.K.B.,Coord. Chem. Rev., 2011, vol. 255, p. 1733. https://doi.org/10.1016/j.ccr.2011.02.001

    Article  CAS  Google Scholar 

  2. Stefak, R., Sirven, A.M., Fukumoto, S., Nakagawa, H., and Rapenne, G., Coord. Chem. Rev., 2015, vol. 287, p. 79. https://doi.org/10.1016/j.ccr.2014.11.014

    Article  CAS  Google Scholar 

  3. Gisbert, Y., Abid, S., Bertrand, G., Saffon-Merceron, N., Kammerer, C., and Rapenne, G., Chem. Commun., 2019, vol. 55, p. 14689. https://doi.org/10.1039/c9cc08384g

    Article  CAS  Google Scholar 

  4. Erbland, G., Abid, S., Gisbert, Y., Saffon-Merceron, N., Hashimoto, Y., Andreoni, L., Gurin, T., Kammerer, C., Rapenne, G., Chem. Eur. J., 2019, vol. 25, p. 16328. https://doi.org/10.1002/chem.201903615

    Article  CAS  PubMed  Google Scholar 

  5. Kelch, A.S., Jones, P.G., Dix, I., and Hopf, H., Beilstein J. Org. Chem., 2013, vol. 9, p. 1705. https://doi.org/10.3762/bjoc.9.195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Greene, D.L., Chau, A., Monreal, M., Mendez, C., Cruz, I., Wenj, T., Tikkanen, W., Schick, B., and Kantardjieff, K., J. Organomet. Chem., 2003, vol. 682, p. 8. https://doi.org/10.1016/S0022-328X(03)00637-5

    Article  CAS  Google Scholar 

  7. Kelly, R.P., Bell, T.D.M., Cox, R.P., Daniels, D.P., Deacon, G.B., Jaroschik, F., Junk, P.C., Le Goff, X.F., Lemercier, G., Martinez, A., Wang, J., and Werner, D., Organometallics, 2015, vol. 34, p. 5624. https://doi.org/10.1021/acs.organomet.5b00842

    Article  CAS  Google Scholar 

  8. Harder, S., Naglav, D., Ruspic, C., Wickleder, C., Adlung, M., Hermes, W., Eul, M., Pçttgen, R., Rego, D.B., Poineau, F., Czerwinski, K.R., Herber, R.H., and Nowik, I., Chem. Eur. J., 2013, vol. 19, p. 12272. https://doi.org/10.1002/chem.201302021

    Article  CAS  PubMed  Google Scholar 

  9. Suta, M., Kuehling, M., Liebing, P., Edelmann, F.T., and Wickleder, C., J. Lumin., 2017, vol. 187, p. 62. https://doi.org/10.1016/j.jlumin.2017.02.054

    Article  CAS  Google Scholar 

  10. Sturala, J., Etherington, M.K., Bismillah, A.N., Higginbotham, H.F., Trewby, W., Aguilar, J.A., Bromley, E.H.C., Avestro, A.-J., Monkman, A.P., and McGonigal, P.R., J. Am. Chem. Soc., 2017, vol. 139, p. 17882. https://doi.org/10.1021/jacs.7b08570

    Article  CAS  PubMed  Google Scholar 

  11. Minkin, V.I., Mikhailov, I.E., Dushenko, G.A., Yudilevich, I.A., Zschunke, A., and Mugge, K., J. Phys. Org. Chem., 1991, vol. 4, p. 31. https://doi.org/10.1002/poc.610040107

    Article  CAS  Google Scholar 

  12. Minkin, V.I., Mikhailov, I.E., Dushenko, G.A., and Zschunke, A.,Russ. Chem. Rev., 2003, vol. 72, p. 867. https://doi.org/10.1070/RC2003v072n10ABEH000848

    Article  CAS  Google Scholar 

  13. Mikhailov, I.E., Dushenko, G.A., and Minkin, V.I., Molekulyarnye peregruppirovki tsiklopolienov (Molecular Rearrangements of Cyclopolyenes), Moscow: Nauka, 2008.

  14. Dushenko, G.A., Mikhailov, I.E., Mikhailova, O.I., Minyaev, R.M., and Minkin, V.I., Russ. Chem. Bull., Int. Ed., 2015, vol. 64, p. 2043. https://doi.org/10.1007/s11172-015-1115-z

    Article  CAS  Google Scholar 

  15. Breslow, R. and Canary, J.W., J. Am. Chem. Soc., 1991, vol. 113, p. 3950. https://doi.org/10.1021/ja00010a041

    Article  CAS  Google Scholar 

  16. Dushenko, G.A., Mikhailov, I.E., Mikhailova, O.I., Minyaev, R.M., and Minkin, V.I., Mendeleev Commun., 2015, vol. 25, p. 21. https://doi.org/10.1016/j.mencom.2015.01.007

    Article  CAS  Google Scholar 

  17. Alsabil, K., Viault, G., Suor-Cherer, S., Helesbeux, J., Merza, J., Dumontet, V., Pena-Rodriguez, L., Richomme, P., and Seraphin, D., Tetrahedron, 2017, vol. 73, p. 6863. https://doi.org/10.1016/j.tet.2017.10.039

    Article  CAS  Google Scholar 

  18. Alajarín, M., Ortín, M., Sánchez-Andrada, P., and Vidal, A.,J. Org. Chem., 2006, vol. 71, p. 8126. https://doi.org/10.1021/jo061286e

    Article  CAS  PubMed  Google Scholar 

  19. Dushenko, G.A., Mikhailov, I.E., Mikhailova, O.I., Minyaev, R.M., and Minkin, V.I,. Dokl. Chem., 2018, vol. 479, p. 53. https://doi.org/10.1134/S0012500818040067

    Article  CAS  Google Scholar 

  20. Dushenko, G.A., Mikhailov, I.E., Mikhailova, O.I., Minyaev, R.M., and Minkin, V.I., Dokl. Chem., 2017, vol. 476, p. 230. https://doi.org/10.1134/S0012500817100020

    Article  CAS  Google Scholar 

  21. Dushenko, G.A., Mikhailova, O.I., Mikhailov, I.E., Minyaev, R.M., and Minkin, V.I., Russ. Chem. Bull., Int. Ed., 2009, vol. 58, p. 1713. https://doi.org/10.1007/s11172-009-0237-6

    Article  CAS  Google Scholar 

  22. Brydges, S., Harrington, L.E., and McGlinchey, M.J., Coord. Chem. Rev., 2002, vols. 233–234, p. 75. https://doi.org/10.1016/S0010-8545(02)00098-X

    Article  Google Scholar 

  23. Dushenko, G.A., Mikhailov, I.E., Mikhailova, O.I., Minyaev, R.M., and Minkin, V.I., Dokl. Chem., 2016, vol. 471, p. 350. https://doi.org/10.1134/S0012500816120028

    Article  CAS  Google Scholar 

  24. Rawashdeh, A.M., Parambil, P.C., Zeng, T., and Hoffmann, R.,J. Am. Chem. Soc., 2017, vol. 139, p. 7124. https://doi.org/10.1021/jacs.7b03388

    Article  CAS  PubMed  Google Scholar 

  25. Kalpana, P. and Akilandeswari, L., J. Phys. Org. Chem., 2019, vol. 32, article no. e3991. https://doi.org/10.1002/poc.3991

  26. Okajima, T. and Imafuku, K., J. Org. Chem., 2002, vol. 67, p. 625. https://doi.org/10.1021/jo010084+

    Article  CAS  PubMed  Google Scholar 

  27. Platonov, D.N., Okonnishnikova, G.P., Levina, A.A., and Tomilov, Yu.V., Russ. Chem. Bull., Int. Ed., 2015, vol. 64, p. 241. https://doi.org/10.1007/s11172-015-0851-4

    Article  CAS  Google Scholar 

Download references

Funding

This study was financially supported by the Southern Federal University, 2020 (Ministry of Science and Education of the Russian Federation).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Dushenko.

Ethics declarations

The authors declare the absence of conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dushenko, G.A., Mikhailov, I.E. & Minkin, V.I. Circumambulatory Rearrangements of 5-Halo-1,2,3,4,5-pentaphenylcyclopentadienes. Russ J Org Chem 56, 1744–1752 (2020). https://doi.org/10.1134/S1070428020100127

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070428020100127

Keywords:

Navigation