Skip to main content
Log in

Negative Electrode Based on Silicon–Reduced Graphene Oxide Composite: Features of Charge-Discharge Processes under Different Electrochemical Conditions

  • Applied Electrochemistry and Metal Corrosion Protection
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

The electrochemical properties of an electrode material based on a high-capacity silicon/reduced graphene oxide composite are studied. It was determined that the optimal potentials for reversible insertion/extraction of lithium are in the range of 50–2000 mV. The discharge capacity is 980 mAh g–1 at the charge rate 0.3 C and discharge rate 1.0 C. The addition of vinylene carbonate to the electrolyte solution leads to the stabilization of the solid electrolyte layer on the electrode surface. The discharge capacity is 866 mAh g–1 at the 170th charge/discharge cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. Piper, D.M., Travis, J.J., Young, M., Son, S., Kim, S.C., Oh, K.H., George, S.M., Ban, C., and Lee, S., Adv. Mater., 2014, vol. 26, pp. 1596–1601. https://doi.org/10.1002/adma.201304714

    Article  CAS  PubMed  Google Scholar 

  2. Li, Z., Zhang, Y., Liu, T., Gao, X., Li, S., Ling, M., Liang, C., Zheng, J., Lin, Z., Liu, T. F., Lin, Z., Zheng, J.C., Li, Z.H., Gao, X.H., Li, S.Y., Ling, M., Liang, C.D., and Zhang, Y., Adv. Energy Mater., 2020, vol. 10, ID 1903110. https://doi.org/10.1002/AENM.201903110

    Article  CAS  Google Scholar 

  3. Pakuła, D., Marciniec, B., and Przekop, R.E., Appl. Chem., 2023, vol. 3, pp. 89–109. https://doi.org/10.3390/appliedchem3010007

    Article  CAS  Google Scholar 

  4. Saga, T., NPG Asia Mater., 2010, vol. 2, pp. 96–102. https://doi.org/10.1038/asiamat.2010.82

    Article  Google Scholar 

  5. Huang, Y., Luo, J., Peng, J., Shi, M., Li, X., Wang, X., and Chang, B., J. Energy Storage, 2020, vol. 27, ID 101075. https://doi.org/10.1016/j.est.2019.101075

    Article  Google Scholar 

  6. Pollak, E., Salitra, G., Baranchugov, V., and Aurbach, D., J. Phys. Chem. C, 2007, vol. 111, pp. 11437–11444. https://doi.org/10.1021/JP0729563

    Article  CAS  Google Scholar 

  7. Feng, Z.Y., Peng, W.J., Wang, Z.X., Guo, H.J., Li, X.H., Yan, G.C., and Wang, J.Х., Int. J. Miner. Metall. Mater., 2021, vol. 28, pp. 1549–1564. https://doi.org/10.1007/S12613-021-2335-X

    Article  CAS  Google Scholar 

  8. Hwang, C., Joo, S., Kang, N.-R., Lee, U., Kim, T.-H., Jeon, Y., Kim, J., Kim, Y.-J., Kim, J.-Y., Kwak, S.-K., and Song, H.-K., Sci. Rep., 2015, vol. 5, ID 14433. https://doi.org/10.1038/srep14433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kumar, K.T., Reddy, M.J., Sundari, G.S., Raghu, S., Kalaivani, R. A., Ryu, S. H., and Shanmugharaj, A. M., J. Power Sources, 2020, vol. 450, ID 227618. https://doi.org/10.1016/J.JPOWSOUR.2019.227618

  10. Sun, W., Wan, L., Li, X., Zhao, X., and Yan, X., J. Mater. Chem. A, 2016, vol. 4, pp. 10948–10955. https://doi.org/10.1039/C6TA04386K

  11. Wu, L., Yang, J., Zhou, X., Zhang, M., Ren, Y., and Nie, Y., J. Mater. Chem. A, 2016, vol. 4, pp. 11381–11387. https://doi.org/10.1039/C6TA04398D

    Article  CAS  Google Scholar 

  12. Dou, F., Shi, L., Chen, G., and Zhang, D., Electrochem. Energy Rev., 2019, vol. 2, pp. 149–198. https://doi.org/10.1007/s41918-018-00028-w

    Article  CAS  Google Scholar 

  13. Sehrawat, P., Shabir, A., Abid, Julien, C.M., and Islam, S.S., J. Power Sources, 2021, vol. 501, ID 229709. https://doi.org/10.1016/j.jpowsour.2021.229709

    Article  CAS  Google Scholar 

  14. Feng, K., Li, M., Liu, W., Ghorbani Kashkooli, A., Xiao, X., Cai, M., and Chen, Z., Small, 2018, vol. 14, ID 1702737. https://doi.org/10.1002/smll.201702737

    Article  CAS  Google Scholar 

  15. Xiao, Z., Wang, C., Song, L., Zheng, Y., and Long, T., J. Solid State Electrochem., 2022, vol. 26, pp. 1125–1136. https://doi.org/10.1007/s10008-022-05141-x

    Article  CAS  Google Scholar 

  16. Shen, X., Tian, Z., Fan, R., Shao, L., Zhang, D., Cao, G., Kou, L., and Bai, Y., J. Energy Chem., 2018, vol. 27, pp. 1067–1090. https://doi.org/10.1016/J.JECHEM.2017.12.012

    Article  Google Scholar 

  17. Chadha, U., Hafiz, M., Bhardwaj, P., Padmanaban, S., Sinha, S., Hariharan, S., Kabra, D., Venkatarangan, V., Khanna, M., Selvaraj, S. K., Banavoth, M., Sonar, P., and Badoni, B. R. V., J. Energy Storage, 2022, vol. 55, ID 105352. https://doi.org/10.1016/J.EST.2022.105352

    Article  Google Scholar 

  18. Zhai, W., Ai, Q., Chen, L., Wei, S., Li, D., Zhang, L., Si, P., Feng, J., and Ci, L., Nano Res., 2017, vol. 10, pp. 4274–4283. https://doi.org/10.1007/S12274-017-1584-5

    Article  CAS  Google Scholar 

  19. Ramachandran, A., Sarojiniamma, S., Varatharajan, P., Appusamy, I.S., and Yesodha, S.K., ChemistrySelect, 2018, vol. 3, pp. 11190–11199. https://doi.org/10.1002/slct.201801286

    Article  CAS  Google Scholar 

  20. Wasalathilake, K.C., Hapuarachchi, S.N.S., Zhao, Y., Fernando, J.F.S., Chen, H., Nerkar, J.Y., Golberg, D., Zhang, S., and Yan, C., ACS Appl. Energy Mater., 2020, vol. 3, pp. 521–531. https://doi.org/10.1021/acsaem.9b01778

    Article  CAS  Google Scholar 

  21. Torkashvand, H., and Bagheri-Mohagheghi, M.M., J. Mater. Sci. Mater. Electron., 2021, vol. 32, pp. 16456–16466. https://doi.org/10.1007/S10854-021-06202-Z

  22. Mand Khan, B., Chun Oh, W., Nuengmatch, P., and Ullah, K., Mater. Sci. Eng. B, 2023, vol. 287, ID 116141. https://doi.org/10.1016/J.MSEB.2022.116141

    Article  CAS  Google Scholar 

  23. Eigler, S., Angew. Chemie Int. Ed., 2016, vol. 55, pp. 5122–5122. https://doi.org/10.1002/anie.201602067

    Article  Google Scholar 

  24. Kamboj, S., and Thakur, A., Mater. Today Proc., 2023, https://doi.org/10.1016/J.MATPR.2023.01.041

    Article  Google Scholar 

  25. Korchun, A.V., Evshchik, E.Y., Baskakov, S.A., Bushkova, O.V., and Dobrovolsky, Y.A., Chimica Techno Acta, 2021, vol. 7, pp. 259–268. https://doi.org/10.15826/chimtech.2020.7.4.21

    Article  CAS  Google Scholar 

  26. McDowell, M.T., Lee, S.W., Nix, W.D., and Cui, Y., Adv. Mater., 2013, vol. 25, pp. 4966–4985. https://doi.org/10.1002/adma.201301795

    Article  CAS  PubMed  Google Scholar 

  27. Obrovac, M.N., and Christensen, L., Electrochem. Solid-State Lett., 2004, vol. 7, pp. A93–A96. https://doi.org/10.1149/1.1652421/XML

    Article  Google Scholar 

  28. Li, J., and Dahn, J.R., J. Electrochem. Soc., 2007, vol. 154, pp. A156–A161. https://doi.org/10.1149/1.2409862

    Article  CAS  Google Scholar 

  29. Korchun, A.V., Evshchik, E.Y., Baskakov, S.A., Yagodin, V.V., Kuznetsov, M.V., Bushkova, O.V., Bukun, N. G., and Dobrovolsky, Y. A., Russ. J. Appl. Chem., 2020, vol. 93, pp. 1940–1946. https://doi.org/10.1134/S1070427220120174

    Article  CAS  Google Scholar 

  30. Novikov, D.V., Evschik, E.Y., Berestenko, V.I., Yaroslavtseva, T.V., Levchenko, A.V., Kuznetsov, M.V., Bukun, N.G., Bushkova, O.V., and Dobrovolsky, Y.A., Electrochim. Acta, 2016, vol. 208, pp. 109–119. https://doi.org/10.1016/j.electacta.2016.04.179

    Article  CAS  Google Scholar 

  31. Chan, C.K., Ruffo, R., Hong, S.S., Huggins, R.A., and Cui, Y., J. Power Sources, 2009, vol. 189, pp. 34–39. https://doi.org/10.1016/j.jpowsour.2008.12.047

    Article  CAS  Google Scholar 

  32. Chevrier, V.L., and Dahn, J.R, J. Electrochem. Soc., 2009, vol. 156, pp. A454–A458. https://doi.org/10.1149/1.3111037

    Article  CAS  Google Scholar 

  33. Ota, H., Sakata, Y., Inoue, A., and Yamaguchi, S., J. Electrochem. Soc., 2004, vol. 151, pp. A1659–A1669. https://doi.org/10.1149/1.1785795

    Article  CAS  Google Scholar 

Download references

Funding

The study is performed according to the state assignment (topics FFSG-2024-0006 and FFSG-2024-0010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Yu. Evshchik.

Ethics declarations

The authors declare no conflict of interest.

Additional information

Translated from Zhurnal Prikladnoi Khimii, No. 6, pp. 600–608, June, 2023 https://www.elibrary.ru/SZDUFC

Publisher's Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korchun, A.V., Evshchik, E.Y., Kolmakov, V.G. et al. Negative Electrode Based on Silicon–Reduced Graphene Oxide Composite: Features of Charge-Discharge Processes under Different Electrochemical Conditions. Russ J Appl Chem 96, 674–681 (2023). https://doi.org/10.1134/S107042722306006X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S107042722306006X

Keywords:

Navigation