Skip to main content
Log in

Oxidative Desulfurization of Petroleum Coke

  • Specific Technological Processes
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Desulfurization of petroleum coke by oxidation of its sulfur-containing constituents in an aqueous phase with oxygen at elevated pressures and temperatures in the batch mode (in an autoclave) was studied. Desulfurization was performed in one step in the aqueous phase under excess pressure corresponding to or exceeding the saturated water vapor pressure at 110–250°С. Atmospheric oxygen or gaseous oxygen was used as a desulfurizing agent. The dependences of the degree of desulfurization on the process parameters were determined. The highest degree of desulfurization at an oxygen pressure of 5.0 MPa and 180°С was from 32.34 (at the petroleum coke particle size of 2 mm) to 39.68% (at the petroleum coke particle size smaller than 0.5 mm). The maximal degree of desulfurization, reached at an oxygen pressure of 5.0 MPa, 220°С, and petroleum coke particle size smaller than 0.5 mm, was 51.61%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

REFERENCES

  1. Li, T.S., Li, J., Zhang, H.L., Sun, K.N., and Xiao, J., J. Phys. Chem. A, 2019, vol. 123, no. 4, pp. 796–810. https://doi.org/10.1021/acs.jpca.8b09882

    Article  CAS  PubMed  Google Scholar 

  2. Al-Haj-Ibrahim, H. and Morsi, B.I., Ind. Eng. Chem. Res., 1992, vol. 31, no. 8, pp. 1835–1840. https://doi.org/10.1021/ie00008a001

    Article  CAS  Google Scholar 

  3. Zhong, Q.F., Xiao, J., Du, H.J., and Yao, Z., Energy Fuels, 2017, vol. 31, no. 4, pp. 4539–4547. https://doi.org/10.1021/acs.energyfuels.6b03018

    Article  CAS  Google Scholar 

  4. Zhao, P.J., Ma, C., Wang, J.T., Qiao, W.M., and Ling, L.C., New Carbon Mater., 2018, vol. 33, no. 6, pp. 587–594. https://doi.org/10.1016/S1872-5805(18)60359-2

    Article  CAS  Google Scholar 

  5. Liu, T., Long, M., Jiang, W., Chen, D., Yu, Sh., Duan, H., Sheng, J., and Chen, Ch., Energy Fuels, 2017, vol. 31, no. 7, pp. 7693–7699. https://doi.org/10.1021/acs.energyfuels.7b01085

    Article  CAS  Google Scholar 

  6. Ibrahim, H.B., Ind. Eng. Chem. Res., 1992, vol. 31, no. 8, pp. 1835–1840. https://doi.org/10.1021/ie00008a001

    Article  Google Scholar 

  7. Ibrahim, H. and Morsi, I., Recent Adv. Petrochem. Sci., 2019, vol. 6, no. 3, pp. 0044–0049. RAPSCI.MS.ID 555686. https://juniperpublishers.com/rapsci/pdf/RAPSCI.MS.ID.555686.pdf.

    Google Scholar 

  8. Patent US 2721169 A, Publ. 1955.

  9. Parmar, B.S. and Tollefson, E.L., Can. J. Chem. Eng., 2009, vol. 55, no. 2, pp. 185–191.

    Article  Google Scholar 

  10. Liu, H., Xu, H., Hua, M., Chen, L., Wei, Ya., Wang, C., Wu, P., Zhu, F., Chu, X., Li, H., and Zhu, W., Fuel, 2020, vol. 260, 116200. https://doi.org/10.1016/j.fuel.2019.116200

    Article  CAS  Google Scholar 

  11. Agarwal, P. and Sharma, D.K., Petrol. Sci. Technol., 2011, vol. 29, no. 14, pp. 1482–1493. https://doi.org/10.1080/10916460902839230

    Article  CAS  Google Scholar 

  12. Dobrynkin, N.M., Batygina, M.V., and Noskov, A.S., Chem. Eng. Trans., 2010, vol. 23, pp. 339–344.

    Google Scholar 

  13. Dobrynkin, N.M., Batygina, M.V., Bal’zhinimaev, B.S., Elin, O.L., Rakhimov, Kh.Kh., and Noskov, A.S., Katal. Prom–sti., 2004, no. S (special issue), pp. 32–40.

    Google Scholar 

  14. Syntyhaki, E. and Karonis, D., Anal. Lett., 2021, vol. 54, no. 9, pp. 1470–1495. https://doi.org/10.1080/00032719.2020.1808008

    Article  CAS  Google Scholar 

  15. Syntyhaki, E., Detsi, A., and Karonis, D., J. Anal. Meth. Chem., 2020, vol. 2020, pp. 1–16.

    Article  Google Scholar 

Download references

Funding

The study was financially supported in part by the Novolipetsk Metallurgical Combine (Russia) and Ministry of Science and Higher Education of the Russian Federation within the framework of the government assignment for the Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences (project АААА-А21-121011390010-7).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. M. Dobrynkin.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dobrynkin, N.M., Batygina, M.V. & Kapustin, V.M. Oxidative Desulfurization of Petroleum Coke. Russ J Appl Chem 95, 1297–1303 (2022). https://doi.org/10.1134/S1070427222090038

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427222090038

Keywords:

Navigation