Skip to main content
Log in

Solid–Liquid Extraction of Rare Earth Elements Ce(IV), Pr(III), Er(III), and Y(III) from Concentrated Phosphoric Acid Solutions Using Strongly Acidic Cation Exchange Resin (SQS–6)

  • Various Technological Processes
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

An Erratum to this article was published on 01 June 2022

This article has been updated

Abstract

SQS–6 as a cationic exchange resin was originally used for production of enriched nitrogen and separation of ultrapure N-14. Based on the literature, the application of such resin is very limited. Therefore, it is interesting to test its ability to extract and separate some of the rare earth ions from aqueous media like phosphoric acid solution. In this work, solid–liquid extraction of some rare earth metal ions namely; Ce(IV), Pr(III), Er(III) and Y(III) from 8.0 M phosphoric acid was studied using batch and column techniques with a strongly acidic cation exchange resin (SQS–6). Batch investigations data indicated that the amount of adsorbed metal ions studied decreased with increasing the phosphoric acid concentration. Thermodynamic results obtained from the study of the temperature effect on metal ions sorption showed that the process is endothermic and spontaneous associated with increasing the randomness of the system. The sorption isotherm was favorable and obeys Langmuir isotherm model based on a comparison between experimental and calculated sorption capacity. The experimental sorption capacity were found 5.2, 12.6, 8.8, and 3.8 mg/g for Ce(IV), Pr(III), Y(III), and Er(III), respectively. Column investigations were carried out in terms of the breakthrough curves of the metal ions under study. The breakthrough data obtained for the lanthanide metal ions proved that the experimental sorption capacity and the time required for 50% adsorbate breakthrough (τ) are close to that calculated from Thomas and Yoon–Nelson models. Possible separations of those metal ions were studied and assessed at different sorption conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

Change history

REFERENCES

  1. Habashi, F., J. Chem. Technol. Biotechnol., 1985, vol. 35, no. 1, pp. 5–14. https://doi.org/10.1002/jctb.5040350103

    Article  Google Scholar 

  2. Habashi, F., Can. Metall. Q., 2013, vol. 52, pp. 224–233. https://doi.org/10.1179/1879139513Y.0000000081

    Article  CAS  Google Scholar 

  3. Beker, P., Hignett, T.P., and Palgrave, D.A., Phosphates and Phosphoric Acid, Raw Materials, Technology and Economics of Wet Process, New York: Marcel Decker Inc., 1989.

    Google Scholar 

  4. Reddy, B.R., Kumar, B.N., and Radhika, S., Solvent Extr. Ion Exch., 2009, vol. 27, no. 5-6, pp. 695–711. https://doi.org/10.1080/07366290903270031

    Article  CAS  Google Scholar 

  5. Reddy, B.R., and Kumar, B.N., Solvent Extr. Ion Exch., 2016, vol. 34, no. 3, pp. 226–240. https://doi.org/10.1080/07366299.2016.1169144

    Article  CAS  Google Scholar 

  6. Radhika, S., Nagaraju, V., Kumar, B.N., Kantam, M.L., and Reddy, B.R., J. Rare Earths, 2012, vol. 30, no. 12, pp. 1270–1275. https://doi.org/10.1016/S1002-0721(12)60219-1

    Article  CAS  Google Scholar 

  7. Kumar, B.N., Radhika, S., and Reddy, B.R., Chem. Eng. J., 2010, vol. 160, no. 1, pp. 38–144. https://doi.org/10.1016/j.cej.2010.03.021

    Article  CAS  Google Scholar 

  8. Hérès, X., Blet, V., Natale, P.D., Ouaattou, A., Mazouz, H., Dhiba, D., and Cuer, F., Metals, 2018, vol. 8, no. 9, pp. 682. https://doi.org/10.3390/met8090682

    Article  CAS  Google Scholar 

  9. Abu Elgoud, E.M., Ismail, Z.H., Ahmad, M.I., El-Nadi, Y.A., Abdelwahab, S.M., and Aly, H.F., Russ. J. Appl. Chem., 2019, vol. 92, no. 11, pp. 1581−1592. https://doi.org/10.1134/S1070427219110156

    Article  CAS  Google Scholar 

  10. Marczenko, Z., Spectrophotometric Determination of Elements, New York: John Wiley, 1986.

    Google Scholar 

  11. Uddin, Md.T., Rukanuzzaman, Md., Khan, M.R., and Islam, Md.A., J. Environ. Manage, 2009, vol. 90, no. 11, pp. 3443–3450. https://doi.org/10.1016/j.jenvman.2009.05.030

    Article  CAS  Google Scholar 

  12. Han, R.P., Zou, L.N., Zhao, X., Xu, Y.F., Xu, F., Li, Y.L., and Wang, Y., Chem. Eng. J., 2009, vol. 149, no. 1–3, pp. 123–131. https://doi.org/10.1016/j.cej.2008.10.015

    Article  CAS  Google Scholar 

  13. El–Gammal, B. and Shady, S.A., Colloid Surf. A: Physicochem. Eng. Asp., 2006, vol. 287, no. 1–3, pp. 132–138 (2006). https://doi.org/10.1016/j.colsurfa.2006.02.068

    Article  CAS  Google Scholar 

  14. Oguz, E. and Ersoy, M., Chem. Eng. J., 2010, vol. 164, no. 1, pp. 56–62. https://doi.org/10.1016/j.cej.2010.08.016

    Article  CAS  Google Scholar 

  15. Xueyong, Z. and Xin, Z., Chem. Eng. Comm., 2014, vol. 201, no. 11, pp. 1459–1467. https://doi.org/10.1080/00986445.2013.818541

    Article  CAS  Google Scholar 

  16. Rizkalla, E.N. and Choppin, G.R., J. Alloy. Compd., 1992, vol. 180, pp. 325–336. https://doi.org/10.1016/0925-8388(92)90398-S

    Article  CAS  Google Scholar 

  17. Gupta, N.K. and Sengupta, A., Hydrometallurgy, 2017, vol. 171, pp. 8– https://doi.org/10.1016/j.hydromet.2017.03.016

    Article  CAS  Google Scholar 

  18. Freundlich, H., Colloid and Capillary Chemistry, London: Methuen and Co. Ltd, 1926.

    Google Scholar 

  19. Langmuir, I., J. Am. Chem. Soc., 1918, vol. 40, no. 9, pp. 1361–1403. https://doi.org/10.1021/ja02242a004

    Article  CAS  Google Scholar 

  20. Han, R.P., Wang, Y., Zhao, X., Wang, Y.F., Xie, F.L, Cheng, J.M., and Tang, M.S., Desalination, 2009, vol. 245, no. 1–3, pp. 284–297. https://doi.org/10.1016/j.desal.2008.07.013

    Article  CAS  Google Scholar 

  21. Baral, S.S., Das, N., Ramulu, T.S., Sahoo, S.K., Das, S.N., and Chaudhury, G.R., J. Hazard. Mater., 2009, vol. 161, no. 2–3, pp. 1427–1435. https://doi.org/10.1016/j.jhazmat.2008.04.127

    Article  CAS  Google Scholar 

  22. Salman, J.M., Njoku, V.O., and Hameed, B.H., Chem. Eng. J., 2011, vol. 174, no. 1, pp. 33–40 (2011). https://doi.org/10.1016/j.cej.2011.08.024

    Article  CAS  Google Scholar 

  23. Thomas, H.C., J. Am. Chem. Soc., 1944, vol. 66, no. 10, pp. 1466–1664. https://doi.org/10.1021/ja01238a017

    Article  Google Scholar 

  24. Liu, D. and Sun, D., Environ. Eng. Sci., 2012, vol. 29, no. 6, pp. 461–465. https://doi.org/10.1089/ees.2010.0435

    Article  CAS  Google Scholar 

  25. Yoon, Y.N. and Nelson, J.H., Am. Ind. Hyg. Assoc. J., 1984, vol. 45, no. 8, pp. 509– 516. https://doi.org/10.1080/15298668491400197

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This research is funded by the Egyptian Atomic Energy Authority and did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. A. El-Nadi.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elgoud, E.M.A., Ismail, Z.H., El-Nadi, Y.A. et al. Solid–Liquid Extraction of Rare Earth Elements Ce(IV), Pr(III), Er(III), and Y(III) from Concentrated Phosphoric Acid Solutions Using Strongly Acidic Cation Exchange Resin (SQS–6). Russ J Appl Chem 95, 602–615 (2022). https://doi.org/10.1134/S1070427222040176

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427222040176

Keywords:

Navigation