Skip to main content
Log in

Copper(II) Stearate-Based Copper-Containing Nanomaterials as Antifriction Additives to Lubricating Oils

  • Inorganic Synthesis and Industrial Inorganic Chemistry
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

A simple and affordable method for preparing copper-containing tribological nanomaterials by thermolysis of copper(II) stearate at 300°C was developed. The materials produced were studied by X-ray diffraction, atomic force microscopy, and sedimentation analysis. It was shown that the crystallite size does not depend on the thermolysis time. The tribological properties of lubricants with additives of the produced copper-containing nanomaterials (0.025–0.2%) were studied on an end-face friction test machine. At the optimum concentration of nanomaterials (0.05%), the coefficient of friction is the lowest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Uflyand, I.E., Zhinzhilo, V.A., and Burlakova, V.E., Friction, 2019, vol. 7, no. 2, pp. 93–116. https://doi.org/10.1007/s40544-019-0261-y

    Article  Google Scholar 

  2. Thakre, A.A. and Thakur, A., Ind. Lubr. Tribol., 2015, vol. 67, no. 4, pp. 328–335. https://doi.org/10.1108/ILT-06-2014-0057

    Article  Google Scholar 

  3. Ilie, F. and Covaliu, C., Lubricants, 2016, vol. 4, no. 2, ID 12. https://doi.org/10.3390/lubricants4020012

    Article  Google Scholar 

  4. Jatti, V.S. and Singh, T.P., J. Mech. Sci. Technol., 2015, vol. 29, no. 2, pp. 793–798. https://doi.org/10.1007/s12206-015-0141-y

    Article  Google Scholar 

  5. Dai, W., Kheireddin, B., Gao, H., and Liang, H., Tribol. Int., 2016, vol. 102, pp. 88–98. https://doi.org/10.1016/j.triboint.2016.05.020

    Article  CAS  Google Scholar 

  6. Noh, T.H. and Jung, O.-S., Acc. Chem. Res., 2016, vol. 49, no. 9, pp. 1835–1843. https://doi.org/10.1021/acs.accounts.6b00291

    Article  CAS  PubMed  Google Scholar 

  7. Goesmann, H. and Feldmann, C., Angew. Chem. Int. Ed., 2010, vol. 49, no. 8, pp. 1362–1395. https://doi.org/10.1002/anie.200903053

    Article  CAS  Google Scholar 

  8. Reverberi, A.P., Kuznetsov, N.T., Meshalkin, V.P., Salerno, M., and Fabiano, B., Theor. Found. Chem. Eng., 2016, vol. 50, no. 1, pp. 59–66. https://doi.org/10.1134/S0040579516010127

    Article  CAS  Google Scholar 

  9. Eom, Y., Abbas, M., and Noh, H.Y., RSC Adv., 2016, vol. 6, no. 19, pp. 15861–15867. https://doi.org/10.1039/C5RA27649G

    Article  CAS  Google Scholar 

  10. Effenberger, F.B., Couto, R.A., Kiyohara, P.K., Machado, G., Masunaga, S.H., Jardim, R.F., and Rossi, L.M., Nanotechnology, 2017, vol. 28, no. 11, pp. 115603. https://doi.org/10.1088/1361-6528/aa5ab0

    Article  CAS  PubMed  Google Scholar 

  11. Fereshteh, Z. and Salavati-Niasari, M., Adv. Colloid Interface Sci., 2017, no. 243, pp. 86–104. https://doi.org/10.1016/j.cis.2017.03.001

    Article  CAS  Google Scholar 

  12. Kharissova, O.V., Irkha, V.A., Drogan, E.G., Burlakova, V.E., Zhinzhilo, V.A., and Uflyand, I.E., Tribol. Lett., 2021, vol. 69, no. 1, ID 16. https://doi.org/10.1007/s11249-020-01394-7

    Article  CAS  Google Scholar 

  13. Kharissova, O.V., Irkha, V.A., Drogan, E.G., Zagrebelnaya, A.I., Burlakova, V.E., Shcherbakov, I.N., Popov, L.D., and Uflyand, I.E., J. Inorg. Organomet. Polym. Mater., 2021, vol. 31, no. 3, pp. 934–944. https://doi.org/10.1007/s10904-020-01855-5

    Article  CAS  Google Scholar 

  14. Gonen, M., Egbuchunam, T.O., Balkose, D., Inal, F., and Ulku, S., J. Vinyl Addit. Technol., 2015, vol. 21, no. 4, pp. 235–244. https://doi.org/10.1002/vnl.21384

    Article  CAS  Google Scholar 

  15. Magonov, S.N. and Whangbo, M.-H., Surface Analysis with STM and AFM: Experimental and Theoretical Aspects of Image Analysis, Weinheim: Wiley, 2008.

    Google Scholar 

  16. Janus, J., Fauxpoint, G., Arntz, Y., Pelletier, H., and Etienne, O., Dent. Mater., 2010, vol. 26, no. 5, pp. 416–425. https://doi.org/10.1016/j.dental.2009.09.014

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

I.E. Uflyand, I.N. Shcherbakov, and L.D. Popov synthesized copper stearate, conducted a study of its physicochemical properties, prepared copper-containing nanomaterials, studied their composition, size, and morphology; E.G. Drogan, M.A. Tautieva, and V.E. Burlakova prepared lubricants based on vaseline oil and copper-containing nanomaterials, and examined their tribological parameters.

Corresponding author

Correspondence to I. E. Uflyand.

Ethics declarations

The authors declare that they have no conflicts of interest requiring disclosure in this article.

Additional information

Translated from Zhurnal Prikladnoi Khimii, No. 7, pp. 867–873, January, 2021 https://doi.org/10.31857/S0044461821070070

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uflyand, I.E., Shcherbakov, I.N., Popov, L.D. et al. Copper(II) Stearate-Based Copper-Containing Nanomaterials as Antifriction Additives to Lubricating Oils. Russ J Appl Chem 94, 920–926 (2021). https://doi.org/10.1134/S1070427221070089

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427221070089

Keywords:

Navigation