Skip to main content
Log in

Analysis of the Safety of Using Hydrocarbon Fuels and Hydrogen in Automobiles

  • Hydrogen Technologies
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Comparative analysis of the fire and explosion safety in using hydrocarbon fuels and hydrogen as automobile fuel is made. For reliable analysis, it is necessary to take into account the set of all the parameters influencing the fire and explosion safety, including the influence of the composition of multicomponent fuels on their characteristics and the influence of external conditions in cases of both normal operation and emergency; study and comparison of separate properties of fuels are insufficient. Complex analysis of the physicochemical properties of fuels shows that, in case of emergency, the consequences of the hydrogen ejection from the fuel system are in most cases less dangerous compared to the ejection of hydrocarbon fuels. The development of detonation combustion as a result of ignition of a hydrogen–air mixture formed in open space is improbable because of high diffusion ability of hydrogen and impossibility of the buildup of the required concentration. The possibility of wide use of hydrogen as an automobile fuel is substantiated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

Notes

  1. The Federal Government. The National Hydrogen Strategy. https://www.bmbf.de/files/bmwi_Nationale%20Wasserstoff-strategie_Eng_s01.pdf.

  2. International Energy Agency. https://www.iea.org/reports/hydrogen-projects-database.

  3. Hydrogen Europe. https://www.hydrogeneurope.eu/about-us-0

  4. Hydrogen Fuel Cell Engines. Module 1: Hydrogen Properties. https://www1.eere.energy.gov/hydro­genandfuelcells/­tech_validation/pdfs/fcm01r0.pdf.

  5. Rivkin, C., Burgess, R., and Buttner, W., Hydrogen Technologies Safety Guide, National Renewable Energy Laboratory. Technical Report NREL/TP-5400-60948, 2015. https://www.nrel.gov/docs/fy15osti/60948.pdf.

REFERENCES

  1. Abdin, Z., Zafaranloo, A., Rafiee, A., Merida, W., Lipinski, W., and Khalilpour, K.R., Renew. Sustain. Energy Rev., 2020, vol. 120, ID 109620. https://doi.org/10.1016/j.rser.2019.109620

    Article  CAS  Google Scholar 

  2. Proskuryakova, L., Energy Strategy Rev., 2019, vol. 26, ID 100378. https://doi.org/10.1016/j.esr.2019.100378

    Article  Google Scholar 

  3. Staffell, I., Scamman, D., Abad, A.V., Balcombe, P., Dodds, P.E., Ekins, P., Shahd, N., and Ward, K.R., Energy Environ. Sci., 2019, vol. 12, pp. 463–491. https://doi.org/10.1039/C8EE01157E

    Article  CAS  Google Scholar 

  4. Ceper, B.A., Hydrogen Energy: Challenges and Perspectives, Minic, D., Ed., London: IntechOpen, 2012, pp. 175–200. https://doi.org/10.5772/50597

    Article  CAS  Google Scholar 

  5. Tunestal, P., Christensen, M., Einewall, P., Andersson, T., and Johansson, B., Hydrogen Addition for Improved Lean Burn Capability of Slow and Fast Burning Natural Gas Combustion Chambers: SAE Technical Paper 2002-01-2686. https://doi.org/10.4271/2002-01-2686

  6. Stenina, I.A., Safronova, E.Yu., Levchenko, A.V., Dobrovol’skii, Yu.A., and Yaroslavtsev, A.B., Teploenergetika, 2016, no. 6, pp. 4–18. https://doi.org/10.1134/S0040363616060072

    Article  Google Scholar 

  7. Groger, O., Gasteiger, H.A., and Suchsland, J.-P., J. Electrochem. Soc., 2015, vol. 162, no. 14, pp. A2605–A2622. https://doi.org/10.1149/2.0431607jes

    Article  CAS  Google Scholar 

  8. Wilberforce, T., El-Hassan, Z., Khatib, F.N., Makky, A.A., Baroutaji, A., Carton, J.G., and Olabi, A.G., Int. J. Hydrogen Energy, 2017, vol. 42, no. 40, pp. 25695–25734. https://doi.org/10.1016/j.ijhydene.2017.07.054

    Article  CAS  Google Scholar 

  9. Shebeko, Yu.N., Pozharovzryvobezopasnost’, 2020, vol. 29, no. 4, pp. 16–24.

    Google Scholar 

  10. Hansen, A.C., Zhang, Q., and Lyne, P.W.L., Bioresource Technol., 2005, vol. 96, no. 3, pp. 277–285. https://doi.org/10.1016/j.biortech.2004.04.007

    Article  CAS  Google Scholar 

  11. Schroder, V. and Molnarne, M., J. Hazard. Mater., 2005, vol. 121, nos. 1–3, pp. 37–44. https://doi.org/10.1016/j.jhazmat.2005.01.032

    Article  CAS  PubMed  Google Scholar 

  12. Mathurkar, H., Minimum Ignition Energy and Ignition Probability for Methane, Hydrogen and Their Mixtures: Thesis, Loughborough Univ., 2009. https://repository.lboro.ac.uk/articles/Minimum_ignition_energy_and_ignition_probability_for_Methane_Hydrogen_and_their_mixtures/9238682/1

  13. Jaimes, D., McDonel, V.G., and Samuelsen, G.S., Energy Fuels, 2018, vol. 32, no. 10, pp. 10964–10973. https://doi.org/10.1021/acs.energyfuels.8b02031

    Article  CAS  Google Scholar 

  14. Huang, L., Pei, S., Wang, Y., Zhang, L., Ren, S., Zhang, Z., and Xiao, Y., Fuel, 2019, vol. 247, pp. 47–56. https://doi.org/10.1016/j.fuel.2019.03.023

    Article  CAS  Google Scholar 

  15. Coward, H.F. and Jones, G.W., Limits of Flammability of Gases and Vapors, US Bureau Mines Bull., 1952, no. 503. https://doi.org/10.2172/7355338

  16. Wu, M., Shu, G., Tian, H., Wang, X., and Liu, Y., Fuel, 2018, vol. 214, pp. 55–62. https://doi.org/10.1016/j.fuel.2017.10.127

    Article  CAS  Google Scholar 

  17. Liaw, H.-J. and Chen, K.-Y., Fuel, 2016, vol. 178, pp. 179–187. https://doi.org/10.1016/j.fuel.2016.03.034

    Article  CAS  Google Scholar 

  18. Kondo, S., Takizawa, K., Takahashi, A., and Tokuhashi, K., J. Hazard. Mater., 2011, vol. 187, nos. 1–3, pp. 585–590. https://doi.org/10.1016/j.jhazmat.2011.01.037

    Article  CAS  PubMed  Google Scholar 

  19. Zabetakis, M.G., Flammability Characteristics of Combustible Gases and Vapors, US Bureau Mines Bull., 1965, no. 627. https://www.osti.gov/servlets/purl/7328370/

  20. Gummer, J. and Hawksworth, S., Spontaneous Ignition of Hydrogen. Literature Review, RR615 Research Report 2008. http://www.hse.gov.uk/research/rrpdf/rr615.pdf

  21. Malakhov, A.A., Avdeenkov, A.V., du Toit, M.H., and Bessarabov, D.G., Int. J. Hydrogen Energy, 2020, vol. 45, no. 15, pp. 9231–9240. https://doi.org/10.1016/j.ijhydene.2020.01.035

    Article  CAS  Google Scholar 

  22. Glover, A.M., Baird, A.R., and LaFleur, C.B., Hydrogen Fuel Cell Vehicles in Tunnels, Sandia National Lab. Report no. SAND2020-4507R 685771, 2020. https://doi.org/10.2172/1617268

  23. Alcock, J.L., Shirvill, L.C., and Cracknell, R.F., Compilation of Existing Safety Data on Hydrogen and Comparative Fuels, Contract Report EIHP2 N ENK6-CT2000-00442, 2001. http://www.eihp.org/public/documents/CompilationExistingSafetyData_on_H2_and_ComparativeFuels_S.pdf

  24. Wei, F.G. and Tsuzaki, K., in Gaseous Hydrogen Embrittlement of Materials in Energy Technologies. The Problem, Its Characterisation and Effects on Particular Alloy Classes, Elsevier, 2012. https://doi.org/10.1533/9780857093899.3.493

  25. Murakami, Y., in Gaseous Hydrogen Embrittlement of Materials in Energy Technologies. The Problem, Its Characterisation and Effects on Particular Alloy Classes, Elsevier, 2012, vol. 2, pp. 379–417. https://doi.org/10.1533/9780857093899.2.379

  26. Kolachev, B.A., Vodorodnaya khrupkost’ tsvetnykh metallov (Hydrogen Brittleness of Nonferrous Metals), Moscow: Metallurgiya, 1966.

    Google Scholar 

  27. Westlake, D.G., Trans. ASM, 1969, vol. 62, pp. 1000–1006.

    CAS  Google Scholar 

  28. Dadfarnia, M., Novak, P., Ahn, D.C., Liu, J.B., Sofronis, P., Johnson, D.D., and Robertson, I.M., Adv. Mater., 2010, vol. 22, no. 22, pp. 1128–1135. https://doi.org/10.1002/adma.200904354

    Article  CAS  PubMed  Google Scholar 

  29. Troiano, A.R., Metallogr. Microstruct. Anal., 2016, vol. 5, pp. 557–569. https://doi.org/10.1007/s13632-016-0319-4

    Article  Google Scholar 

  30. Li, X., Ma, X., Zhang, J., Akiyama, E., Wang, Y., and Song, X., Acta Metall. Sinica (English Lett.), 2020, vol. 33, pp. 759–773. https://doi.org/10.1007/s40195-020-01039-7

    Article  CAS  Google Scholar 

  31. Depover, T., Wallaert, E., and Verbeken, K., Mater. Sci. Eng. A, 2016, vol. 649, pp. 201–208. https://doi.org/10.1016/j.msea.2015.09.124

    Article  CAS  Google Scholar 

  32. Stanmore, B.R., Brihlac, J.F., and Gilot, P., Carbon, 2001, vol. 39, pp. 2247–2268. https://doi.org/10.1016/S0008-6223(01)00109-9

    Article  CAS  Google Scholar 

  33. Collura, S., Chaoui, N., Azambre, B., Finqueneisel, G., Heintz, O., Krzton, A., Koch, A., and Weber, J.V., Carbon, 2005, vol. 43, no. 3, pp. 605–613. https://doi.org/10.1016/j.carbon.2004.10.026

    Article  CAS  Google Scholar 

  34. Oberdörster, G., Oberdörster, E., and Oberdörster, J., Environ. Health Perspect., 2005, vol. 113, no. 7, pp. 823–839. https://doi.org/10.1289/ehp.7339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The study was performed in accordance with the government assignment (state registry no. АААА-А19-119061890019-5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Porsin.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Porsin, A.V., Tsarichenko, S.G., Dobrovol’skii, Y.A. et al. Analysis of the Safety of Using Hydrocarbon Fuels and Hydrogen in Automobiles. Russ J Appl Chem 93, 1604–1614 (2020). https://doi.org/10.1134/S10704272201016X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S10704272201016X

Keywords:

Navigation