Skip to main content
Log in

Brønsted Acid Promoted Reactions of γ-Hydroxy Acetylene Ketones. DFT Study of Cationic Intermediates and Concurrent Formation of 3-Furanones and/or Conjugated Enynones

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

Protonation of γ-hydroxy conjugated acetylene ketones Ph(O=)C–C≡C–C(OH)R1R2 in strong Brønsted acid H2SO4 or superacid TfOH (CF3SO3H, triflic acid) gives rise to O,O-diprotonated species Ph(+HO=)C–C≡C–C(OH2+)R1R2. Electrophilic, electronic and orbital properties of these dications have been studied by DFT calculations. Depending on the structure of the dications and acidity of Brønsted acid (nucleophilicity of the corresponding acid counter ion), two concurrent reaction products may be formed, 3(2H)-furanones in a way of cyclization and/or conjugated enynones in a way of dehydration. Plausible reaction mechanisms are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme

REFERENCES

  1. Abonia, R., Insuasty, D., and Laali, K.K., Molecules, 2023, vol. 28, p. 3379. https://doi.org/10.3390/molecules28083379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Du, S., Zhou, A.-X., Yang, R., Song, X.-R., and Xiao, Q., Org. Chem. Front., 2021, vol. 8, p. 6760. https://doi.org/10.1039/D1QO01151K

    Article  CAS  Google Scholar 

  3. Song, X.-R., Yang, R., and Xiao, Q., Adv. Synth. Catal., 2021, vol. 363, p. 852. https://doi.org/10.1002/adsc.202001142

    Article  CAS  Google Scholar 

  4. Oian, H., Huang, D., Bi, Y., and Yan, G., Adv. Synth. Catal., 2019, vol. 361, p. 3240. https://doi.org/10.1002/adsc.201801719

    Article  CAS  Google Scholar 

  5. Khan, T., and Yaragorla, S., Eur. J. Org. Chem., 2019, p. 3989. https://doi.org/10.1002/ejoc.201900474

  6. Trofimov, B.A. and Schmidt, E.Yu., Russ. Chem. Rev., 2014, vol. 83, p. 600. https://doi.org/10.1070/RC2014v083n07ABEH004425

    Article  CAS  Google Scholar 

  7. Bauer, E.B., Synthesis, 2012, vol. 44, p. 1131. https://doi.org/10.1055/s-0031-1290503

    Article  CAS  Google Scholar 

  8. Lee, J.I., Bull. Korean Chem. Soc. 2021, vol. 42, p. 1610. https://doi.org/10.1002/bkcs.12412

  9. Pankova, A.S., Chem. Heterocycl. Compd., 2020, vol. 56, p. 829. https://doi.org/10.1007/s10593-020-02739-9

  10. Golovanov, A.A., Odin, I.S., and Zlotskiy, S.S., Russ. Chem. Rev., 2019, vol. 88, p. 280. https://doi.org/10.1070/RCR4808

    Article  CAS  Google Scholar 

  11. Fraile, A., Parra, A., Tortosa, M., and Aleman, J., Tetrahedron, 2014, vol. 70, p. 9145. https://doi.org/10.1016/j.tet.2014.07.023

  12. Sulman, E.M., Russ. Chem. Rev., 1994, vol. 63, p. 923. https://doi.org/10.1070/RC1994v063n11ABEH000126

    Article  Google Scholar 

  13. Yang, F., Jin, T., Bao, M., and Yamamoto, Y., Chem. Commun., 2011, vol. 47, p. 4541. https://doi.org/10.1039/C1CC10584A

    Article  CAS  Google Scholar 

  14. Wang, J., Zhu, H.-T., Li, Y.-X., Wang, L.-J., Qiu, Y.-F., Qiu, Z.-H., Zhong, M.-J., Liu, X.-Y., and Liang, Y.-M., Org. Lett., 2014, vol. 16, p. 2236. https://doi.org/10.1021/ol500741a

    Article  CAS  PubMed  Google Scholar 

  15. Larock, R.C. and Liu, C.-L., J. Org. Chem., 1983, vol. 48, p. 2151. https://doi.org/10.1021/jo00161a007

    Article  CAS  Google Scholar 

  16. Toda, F., Yamamoto, M., and Tanaka, K., Tetrahedron Lett., 1985, vol. 26, p. 631. https://doi.org/10.1016/S0040-4039(00)89165-0

    Article  CAS  Google Scholar 

  17. Qiu, Y.-F., Chen, S.-P., Cao, J.-H., Li, M., Quan, Z.-J., Wang, X.-C., and Liang, Y.-M., Org. Lett., 2022, vol. 24, p. 2264. https://doi.org/10.1021/acs.orglett.2c00795

    Article  CAS  PubMed  Google Scholar 

  18. Qiu, Y.-F., Chen, S.-P., Cao, J.-H., Wang, S., Li, J.-H., Li, M., Quan, Z.-J., Wang, X.-C., and Liang, Y.-M., Org. Lett., 2022, vol. 24, p. 8609. https://doi.org/10.1021/acs.orglett.2c03323

    Article  CAS  PubMed  Google Scholar 

  19. Ning, S.-S., Meng, D., Zhang, J.-Y., Liu, S.-L., Zhou, N.-M., Jin, X., and Zhu, H.-T., J. Org. Chem., 2021, vol. 86, p. 7347. https://doi.org/10.1021/acs.joc.1c00224

    Article  CAS  PubMed  Google Scholar 

  20. Sun, Y.-L., Wie, Y., and Shi, M., Org. Chem. Front., 2019, vol. 6, p. 2420. https://doi.org/10.1039/C9QO00642G

    Article  CAS  Google Scholar 

  21. Inoe, Y., Ohichi, K., Imaizumi, S., Hagiwara, H, and Uda, H., Synth. Commun., 1990, vol. 20, p. 3063. https://doi.org/10.1080/00397919008051526

    Article  Google Scholar 

  22. Minami, Y., Kuniyasu, H., and Kambe, N., Org. Lett., 2008, vol. 10, p. 2469. https://doi.org/10.1021/ol800754w

    Article  CAS  PubMed  Google Scholar 

  23. Kumar, A., Mishra, P.K., and Verma, A.K., Chem. Commun., 2023, vol. 59, p. 7263. https://doi.org/10.1039/D3CC01586F

    Article  CAS  Google Scholar 

  24. Mothe, S.R., Novianti, M.L., Ayers, B.J., and Chan, P.W.H., Org. Lett. 2014, vol. 16, p. 4110. https://doi.org/10.1021/ol501809p

  25. Kumar, G.R., Kumara, Y.K., and Reddy, M.S., Chem. Commun., 2016, vol. 52, p. 6589. https://doi.org/10.1039/C6CC02047J

    Article  CAS  Google Scholar 

  26. Vereschagin, L.I., Gavrilov, L.D., Titova, E.I., Buzilova, S.R., Sushkova, N.V., and Maksikova, A.V., Zh. Org. Khim., 1975, vol. 11, p. 47.

  27. Vereschagin, L.I., Tikhonova, L.G., Maksikova, A.V., Gavrilov, L.D., and Gareev, G.A., Zh. Org. Khim., 1979, vol. 15, p. 612.

  28. Tikhonova, L.G., Serebryakova, E.S., Maksikova, A.V., Chernysheva, G.V., and Vereschagin, L.I., Zh. Org. Khim., 1981, vol. 17, p. 1401.

  29. Kraft, P., Ahlin. J.S.E., Buchel, M., and Sutter, P., Synthesis, 2012, vol. 44, p. 2958. https://doi.org/10.1055/s-0032-1317033

  30. Kuang, Z., Chen, H., Yan, J., Yang, K., Lan, Y., and Song, Q., Org. Lett., 2018, vol. 20, p. 5153. https://doi.org/10.1021/acs.orglett.8b02077

    Article  CAS  PubMed  Google Scholar 

  31. Husain, A., Khan, S.A., Iram, F., Iqbal, A., and Asif, M., Eur. J. Med. Chem., 2019, vol. 171, p. 66. https://doi.org/10.1016/j.ejmech.2019.03.021

  32. Panda, N. and Nayak, D.K., Monatsh. Chem., 2018, vol. 149, 1093. https://doi.org/10.1007/s00706-018-2152-8

  33. Rasras, A.J., Shehadi, I.A., Younes, E.A., Jaradat, D.M.M., and AlQawasmeh, R.A., R. Soc. Open. Sci., 2021, vol. 8, p. 211145. https://doi.org/10.1098/rsos.211145

  34. Saimoto, H., Shinoda, M., Matsubara, S., Oshina, K., Hiyama, T., and Nozaki, H., Bull. Chem. Soc. Jpn., 1983, vol. 56, p. 3088. https://doi.org/10.1246/BCSJ.56.3088

  35. Egi, M., Azechi, K., Saneto, M., Shimizu, K., and Akai, S., J. Org. Chem., 2010, vol. 75, p. 2123. https://doi.org/10.1021/jo100048j

  36. Marson, C.M., Edaan, E., Morrell, J.M., Coles, S.J., Hursthouse, and Davies, D.T., Chem. Commun., 2007, vol. 43, p. 2494. https://doi.org/10.1039/B701548H

    Article  Google Scholar 

  37. Silva, F., Reiter, M., Mills-Webb, R., Sawicki, M., Klar, D., Bensel, N., Wagner, A., and Gouverneur, V., J. Org. Chem., 2006, vol. 71, p. 8390. https://doi.org/10.1021/jo061292a

  38. Sarma, M.J., Sudarshana, K.A., Srihari, P., and Mehta, G., J. Org. Chem., 2023, vol. 88, p. 3945. https://doi.org/10.1021/acs.joc.2c02921

    Article  CAS  PubMed  Google Scholar 

  39. Solas, M., Muñoz, M.A., Suárez-Pantiga, S., and Sanz, R., Org. Lett., 2020, vol. 22, p. 7681. https://doi.org/10.1021/acs.orglett.0c02892

    Article  CAS  PubMed  Google Scholar 

  40. Liu, R., Yang, S., Chen., Z., Kong, X., Ding, H., and Fang, X., Org. Lett., 2020, vol. 22, p. 6948. https://doi.org/10.1021/acs.orglett.0c02505

  41. Bag, D., Kour, H, Saha, N., Kamal, Holla, H., and Bharatam, P.V., Sawant, S.D., J. Org. Chem., 2023, vol. 88, p. 2377. https://doi.org/10.1021/acs.joc.2c02790

  42. Bag, D. and Sawant, S.D., Org. Lett., 2022, vol. 24, p. 4930. https://doi.org/10.1021/acs.orglett.2c01845

  43. Antony, J., Musthafa, S.P., Natarajan, R., Mathai, S., Davaky, K.S., and Rappai, J.P., Synth. Commun., 2022, vol. 52, p. 535. https://doi.org/10.1080/00397911.2022.2036347

  44. Musthafa, S.P., Antony, J., Natarajan, R., and Rappai, J.P., New J. Chem., 2022, vol. 46, p. 9825. https://doi.org/10.1039/D2NJ00991A

    Article  CAS  Google Scholar 

  45. Malkina, A.G., Stepanov, A.V., Sobenina, L.N., Shemyakina, O.A., Ushakov, I.A., Smirnov, V.I., and Trofimov, B.A., Synthesis, 2016, vol. 48, p. 1880. https://doi.org/10.1055/s-0035-1561591

  46. Trofimov, B.A., Stepanov, A.V., Malkina, A.G., Volostnykh, O.G., Shemyakina, O.A., and Ushakov, I.A., Synth. Commun., 2015, vol. 45, p. 2718. https://doi.org/10.1080/00397911.2015.1103872

  47. Wagh, S.B., Singh, R.R., Rajmani, R., Sahani, R.L., and Liu, R.-S., Org. Lett., 2020, vol. 22, p. 4478. https://doi.org/10.1021/acs.orglett.0c01480

    Article  CAS  Google Scholar 

  48. Chen. K., Shi, G., Zhang, W., Li, H., and Wang, C., J. Am. Chem. Soc. 2016, vol. 138, p. 14198. https://doi.org/10.1021/jacs.6b08895

  49. Zerov, A.V., Kazakova, A.N., Boyarskaya, I.A., Panikorovskii, T.L., Suslonov, V.V., Khoroshilova, O.V., and Vasilyev, A.V., Molecules, 2018, vol. 23, p. 3079. https://doi.org/10.3390/molecules23123079

  50. Nursahedova, S.K., Zerov, A.V., and Vasilyev, A.V., Russ. J. Org. Chem., 2018, vol. 54, p. 1764. https://doi.org/10.1134/S1070428018120047

  51. Nursahedova, S.K., Ryabukhin, D.S., Muzalevskiy, V.M., Iakovenko, R.O., Boyarskaya, I.A., Starova, G.L., Nenajdenko, V.G., and Vasilyev, A.V., Eur. J. Org. Chem., 2019, p. 1293. https://doi.org/10.1002/ejoc.201801645

  52. Devleshova, N.A., Lozovskiy, S.V., and Vasilyev, A.V., Tetrahedron, 2019, vol. 75, p. 130517. https://doi.org/10.1016/j.tet.2019.130517

  53. Kuang, Z., Chen, H., Yan, J., Yang, K., Lan, Y., and Song, Q., Org. Lett., 2018, vol. 20, p. 5153. https://doi.org/10.1021/acs.orglett.8b02077

  54. Parr, R.G., Szentpaly, L.V., and Liu, S., J. Am. Chem. Soc., 1999, vol. 121, p. 1922. https://doi.org/10.1021/ja983494x

    Article  CAS  Google Scholar 

  55. Gus’kova, T.A., Durnev, A.D., Reikhart, D.V., Chernyavtseva, A.P., Robb, J., Cheeseman, R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A.Jr., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Keith, T., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J.B., Ortiz, J.V., Cioslowski, J., and Fox, D.J., Gaussian 09, Revision C.01, Gaussian, Inc., Wallingford CT, 2010.

  56. Reiter, M., Turner, H., Mills-Webb, R., and Gouverneur V., J. Org. Chem., 2005, vol. 70, p. 8478. https://doi.org/10.1021/jo051274d

  57. Binder, J.T., Crone, B., Kirsch, S.F., Liebert, C., and Menz, H., Eur. J. Org. Chem., 2007, 1636. https://doi.org/10.1002/ejoc.200601060

  58. Badanyan, S.O. and Minasyan, T.T., Arm. Khim. Zh., 1978, vol. 31, p. 452.

  59. Bai, С., Jian, S., Yao, X., and Li, Y., Catal. Sci. Technol., 2014, vol. 4, p. 3261. https://doi.org/10.1039/C4CY00488D

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Spectral studies were performed at Center for Magnetic Resonance, Center for Chemical Analysis and Materials Research of the St. Petersburg University.

Funding

This work was supported by the Russian Science Foundation (grant no. 23-23-00013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Vasilyev.

Ethics declarations

The authors declare no conflict of interest.

Additional information

To the 300th Anniversary of the founding of St. Petersburg University

Publisher's Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuzmin, A.A., Boyarskaya, I.A., Khoroshilova, O.V. et al. Brønsted Acid Promoted Reactions of γ-Hydroxy Acetylene Ketones. DFT Study of Cationic Intermediates and Concurrent Formation of 3-Furanones and/or Conjugated Enynones. Russ J Gen Chem 94 (Suppl 1), S138–S147 (2024). https://doi.org/10.1134/S1070363224140147

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363224140147

Keywords:

Navigation