Skip to main content
Log in

Synthesis and Characterization of New Schiff Base Containing 1,2,4-Triazole-3-thione Moiety and Its Complexes with Some Transition Metal Ions: Spectroscopic and Computational Studies

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

The divalent transition metal ions Co, Ni, and Cu coordination compounds with unusual bidentate mixed Schiff base-based 1,2,4-triazole-3-thione ligand in a protonated specific coordination stoichiometry and structures forms were synthesized. The structural composition of the ligand 5-(1-naphthylmethyl)-4-{(Z)-[(2E)-3-phenyl-2-propen-1-ylidene]amino}-2,4-dihydro-3H-1,2,4-triazole-3-thione (LH) was fully identified by 1H and 13C NMR, FTIR, UV-Vis, mass spectrometry as well elemental analysis. The UV-Vis, FTIR spectroscopy, magnetic susceptibility measurements, molar conductance, flame atomic absorption, and elemental analysis (CHNS) techniques were used to characterize the synthesized complexes. Three complexes of Ni(II), Co(II), and Cu(II), in addition to the ligand LH, were the subject of computational investigations. Benchmark analyses were carried out to determine the best degree of calculation for the complexes under the study. The B3LYP approach was chosen as the computation method. The B3LYP/6-31G (d,p) (LANL2DZ) was the best calculation rank. IR spectra and structural studies were carried out. Furthermore, a thorough investigation and examination of biological characteristics were conducted. Complex (Cu) was determined to be the most excellent choice for biological applications based on calculation findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme
Scheme
Scheme
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. Shaker, R.M., Arkivoc, 2006, vol. 2006, no. 9, p. 59. https://doi.org/10.3998/ark.5550190.0007.904

  2. Radwan, A.A., Alanazi, F.K., and Al-Agamy, M.H., Braz. J. Pharm. Sci., 2017, vol. 53, no. 1. https://doi.org/10.1590/s2175-97902017000115239

  3. Montoir, D., Guillon, R., Gazzola, S., Ourliac-Garnier, I., Soklou, K.E., Tonnerre, A., Picot, C., Planchat, A., Pagniez, F., Le Pape, P., and Logé, C., Eur. J. Med. Chem., 2020, vol. 189, 112082, https://doi.org/10.1016/j.ejmech.2020.112082

  4. Muley, A., Karumban, K.S., Gupta, P., Kumbhakar, S., Giri, B., Raut, R., Misra, A., and Maji, S., J. Organomet. Chem., 2021, p. 954. https://doi.org/10.1016/j.jorganchem.2021.122074

  5. Ihmaid, S.K., Aljuhani, A., Alsehli, M., Rezki, N., Alawi, A., Aldhafiri, A.J., Salama, S.A., Ahmed, H.E.A., and Aouad, M.R., J. Mol. Struct., 2022, vol. 1249, Article ID 131568. https://doi.org/10.1016/j.molstruc.2021.131568

  6. Nabipour, H., Wang, X., Song, L., and Hu, Y., Composites (A), 2021, vol. 143, 106284. https://doi.org/10.1016/j.compositesa.2021.106284

  7. Jian, R.-K., Pang, F.-Q., Lin, Y.-C., and Bai, W.-B., J. Colloid Interface Sci., 2022, vol. 609, p. 513. https://doi.org/10.1016/j.jcis.2021.11.054

  8. Sanina, N.A., Yakuschenko, I.K., Gadomskii, S.Ya., Utenyshev, A.N., Dorovatovskii, P.V., Lazarenko, V.A., Emel’syanova, N.S., Zagainova, E.A., Ovanesyan, N.S., Mumyatova, V.A., Balakina, A.A., Terent’sev, A.A., and Aldoshin, S.M., Polyhedron, 2022, vol. 220, Article ID 115822. https://doi.org/10.1016/j.poly.2022.115822

  9. Venugopala, K.N., Kandeel, M., Pillay, M., Deb, P.K., Abdallah, H.H., Mahomoodally, M.F., and Chopra, D., Antibiotics, 2020, vol. 9, no. 9, p. 559. https://doi.org/10.3390/antibiotics9090559

  10. Zharikov, A.A., Vinogradov, R.A., Zezina, E.A., Pozdnyakov, A.S., Feldman, V.I., Vasiliev, A.L., and Zezin, A.A., Colloid Interface Sci. Commun., 2022, vol. 47, Article ID 100602. https://doi.org/10.1016/j.colcom.2022.100602

  11. Schlagintweit, J.F., Dyckhoff, F., Nguyen, L., Jakob, C.H.G., Reich, R.M., and Kühn, F.E., J. Catal., 2020, vol. 383, p. 144. https://doi.org/10.1016/j.jcat.2020.01.011

    Article  CAS  Google Scholar 

  12. Wrzosek, B., Cukras, J., Dobrowolski, M.A., and Bukowska, J., J. Phys. Chem. (C), 2017, vol. 121, no. 17, p. 9282. https://doi.org/10.1021/acs.jpcc.6b12361

  13. Kumari, B., Singh, K., and Sharma, A., Chem. Data Collect., 2022, vol. 38, Article ID 100833. https://doi.org/10.1016/j.cdc.2022.100833

  14. Deodware, S.A., Barache, U.B., Chanshetti, U.B., Sathe, D.J., Panchsheela Ashok, U., Gaikwad, S.H., and Prasad Kollur, S, Results Chem., 2021, vol. 3, Article ID 100162. https://doi.org/10.1016/j.rechem.2021.100162

  15. Heffern, M.C., Reichova, V., Coomes, J.L., Harney, A.S., Bajema, E.A., and Meade, T.J., Inorg. Chem., 2015, vol. 54, no. 18, p. 9066. https://doi.org/10.1021/acs.inorgchem.5b01415

  16. Zhong, X., Li, Z., Shi, R., Yan, L., Zhu, Y., and Li, H., ACS Appl Nano Mater., 2022, vol. 5 no. 10, p. 13998. https://doi.org/10.1021/acsanm.2c03477

  17. Wang, J., Meng, Q., Yang, Y., Zhong, S., Zhang, R., Fang, Y., Gao, Y., and Cui, X., ACS Sens., 2022, vol. 7, no. 9, p. 2521. https://doi.org/10.1021/acssensors.2c01550

  18. Fouda, A.E.-A.S., Abd el-Maksoud, S.A., El-Sayed, E.H., Elbaz, H.A., and Abousalem, A.S., RSC Adv., 2021, vol. 11, no. 31, p. 19294. https://doi.org/10.1039/D1RA03083C

  19. El Ibrahimi, B., Soumoue, A., Jmiai, A., Bourzi, H., Oukhrib, R., El Mouaden, K., El Issami, S., and Bazzi, L., J. Mol. Struct., 2016, vol. 1125, p. 93. https://doi.org/10.1016/j.molstruc.2016.06.057

  20. Chauhan, D.S., Quraishi, M.A., Carrière, C., Seyeux, A., Marcus, P., and Singh, A., J. Mol. Liq., 2019, vol. 289, p. 111113. https://doi.org/10.1016/j.molliq.2019.111113

  21. Mather, J.C., Wyllie, J.A., Hamilton, A., Soares da Costa, T.P., and Barnard, P.J., Dalton Trans., 2022, vol. 51, no. 32, p. 12056. https://doi.org/10.1039/D2DT01657E

  22. Zhang, W., Lee, C., and Bushnell, E.A.C., Can. J. Chem., 2021, vol. 99 no. 3, p. 346. https://doi.org/10.1139/cjc-2020-0318

  23. Al-Jorani, K.R., Abbood, A.F., Ali, A.A., Kadhim, M.M., and Hamdan, S.D., Struct. Chem.,2023, vol. 34, p. 1143. https://doi.org/10.1007/s11224-022-02069-w

  24. Polêto, M.D., Rusu, V.H., Grisci, B.I., Dorn, M., Lins, R.D., and Verli, H., Front. Pharmacol., 2018, vol. 9, p. 395. https://doi.org/10.3389/fphar.2018.00395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Solà, M., Boldyrev, A.I., Cyrański, M.K., Krygowski, T.M. and Merino, G., Aromaticity and Antiaromaticity: Concepts and Applications, John Wiley & Sons, Ltd., 2022. https://doi.org/10.1002/9781119085928.ch9

  26. David, F.F., María, G-E., Sebastian, K., Felix, S., Jens, M., Andre, S., Thomas, K., David, C., Blakemore, and David, WCM., Org. Lett., 2023. https://doi.org/10.1021/acs.orglett.3c00994

  27. Aldeghi, M., Malhotra, S., Selwood, D.L., and Chan, A.W.E., Chem. Biol. Drug Des., 2014, vol. 83, p. 450. https://doi.org/10.1111/cbdd.12260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Stephen, D., Roughley, and Allan, M.J., J. Med. Chem., 2011, vol. 54, no. 10, p. 3451. https://doi.org/10.1021/jm200187y

    Article  CAS  Google Scholar 

  29. Aly, A.A., Hassan, A.A., Makhlouf, M.M., and Bräse, S., Molecules, 2020, vol. 25, no. 13, p. 3036. https://doi.org/10.3390/molecules25133036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Askerov, R.K., Magerramov, A.M., Osmanov, V.K., Baranov, E.V., Borisova, G.N., and Borisov, A.V., Russ. J. Coord. Chem., 2019, vol. 45 no. 8, p. 555. https://doi.org/10.1134/S1070328419070017

  31. Vasil’schenko, I.S., Burlov, A.S., Shestakova, T.E., Ikorskii, V.N., Kuz’smenko, T.A., Vlasenko, V.G., Bozhenko, K.V., Divaeva, L.N., Morkovnik, A.S., Bogomyakov, A.S., Garnovskii, D.A., Uraev, A.I., Pirog, I.V., Borodkin, G.S., Utenyshev, A.N., Borodkina, I.G., Karpov, O.A., Khrulev, A.A., Uflyand, I.E., Garnovskii, A.D., Aldoshin, S.M., and Minkin, V.I., Russ. J. Coord. Chem., 2010, vol. 36, no. 3, p. 189. https://doi.org/10.1134/S107032841003005X

  32. Hussein, M.A., Shaker, R.M., Ameen, M.A., and Mohammed, M.F., Arch. Pharm. Res., 2011, vol. 34, no. 8, p. 1239. https://doi.org/10.1007/s12272-011-0802-z

  33. Hassan, A.Y., Phosphoru,s Sulfur, Silicon, Relat. Elem., 2009, vol. 184, no. 11, p. 2759. https://doi.org/10.1080/10426500802470769

  34. Amer, S., El-Wakiel, N., and El-Ghamry, H., J. Mol. Struct., 2013, vol. 1049, p. 326. https://doi.org/10.1016/j.molstruc.2013.06.059

  35. Aouad, M.R., Messali, M., Rezki, N., Ali, A.A.-S., and Lesimple, A., Acta Pharmaceutica, 2015, vol. 65, no. 2, p. 117. https://doi.org/10.1515/acph-2015-0011

  36. Shaker, S.A., Mod. Appl. Sci., 2009, vol. 3, no. 12. https://doi.org/10.5539/mas.v3n12p88

  37. Haddad, R., Yousif, E., and Ahmed, A., SpringerPlus, 2013, vol. 2, no. 1, Article ID 510. https://doi.org/10.1186/2193-1801-2-510

  38. BenGuzzi S.A., Abubakr A.S., and Hassan S.S., Appl. Organomet. Chem., 2023, vol. 37, no. 9, e7203, https://doi.org/10.1002/aoc.7203

  39. Singh, A.K., Pandey, O.P., and Sengupta, S.K., Spectrochim. Acta (A), 2012, vol. 85, no. 1, P. 1, https://doi.org/10.1016/j.saa.2011.08.019

  40. Bazargan, M., Mirzaei, M., Franconetti, A., and Frontera, A., Dalton Trans., 2019, vol. 48, no. 17, p. 5476. https://doi.org/10.1039/C9DT00542K

  41. Brzyska, W., and Rzączyńska, Z., Monatsh. Chem., 1988, vol. 119, no. 2, p. 147. https://doi.org/10.1007/BF00809588

  42. Zhukova, E.S., Torgashev, V.I., Gorshunov, B.P., Lebedev, V.V., Shakurov, G.S., Kremer, R.K., Pestrjakov, E.V., Thomas, V.G., Fursenko, D.A., Prokhorov, A.S., and Dressel, M., J Chem. Phys., 2014, vol. 140, no. 22. https://doi.org/10.1063/1.4882062

  43. Praprotnik, M., Janežič, D., and Mavri, J., J. Phys. Chem. (A), 2004, vol. 108, no. 50, p. 11056. https://doi.org/10.1021/jp046158d

  44. Fournier, J.A., Wolke, C.T., Johnson, C.J., Johnson, M.A., Heine, N., Gewinner, S., Schöllkopf, W., Esser, T.K., Fagiani, M.R., Knorke, H., and Asmis, K.R., Proc. Nat. Acad. Sci., 2014, vol. 111 no. 51, p. 18132. https://doi.org/10.1073/pnas.1420734111

  45. Silverstein, R.M., Webster, F.X., Kiemle, D.J., and Bryce, D.L., Spectrometric Identification of Organic Compounds, New York: Wiley, 2015, p. 81.

  46. Bagihalli, G.B., Avaji, P.G., Patil, S.A., and Badami, P.S., Eur. J. Med. Chem., 2008, vol. 43, no. 12, p. 2639. https://doi.org/10.1016/j.ejmech.2008.02.013

  47. Bader, A.T., Al-qasii, N.A.R., Shntaif, A.H., El Marouani, M., AL Majidi, M.I.H., Trif, L., and Boulhaoua, M., Indones. J. Chem., 2021, vol. 22, no. 1, p. 223. https://doi.org/10.22146/ijc.68859

  48. Tyagi, P., Tyagi, M., Agrawal, S., Chandra, S., Ojha, H., and Pathak, M., Spectrochim. Acta (A), 2017, vol. 171, p. 246. https://doi.org/10.1016/j.saa.2016.08.008

  49. Abdulghani, A.J. and Hussain, R.K., Open J. Inorg. Chem., 2015, vol. 5, no. 4, p. 83. https://doi.org/10.4236/ojic.2015.54010

  50. Deepika, P., Vinusha, H.M., Begum, M., Ramu, R., Shirahatti, P.S., and Nagendra Prasad, M.N., Heliyon, 2022, vol. 8, no. 6, e09648. https://doi.org/10.1016/j.heliyon.2022.e09648

  51. Jóźwiak, M., Stępień, K., Wrzosek, M., Olejarz, W., Kubiak-Tomaszewska, G., Filipowska, A., Filipowski, W., and Struga, M., Molecules, 2018, vol. 23, no. 4, p. 822. https://doi.org/10.3390/molecules23040822

  52. Maria, D., Marta, K.S., Anna, C., Ewa, J-W., Krystyna, S., and Anna, E. K., Acta Pol. Pharm., 2002, vol. 59, no. 4, p. 281. https://ppm.wum.edu.pl/info/article/WUM6cfc654101834f249e88a610e86fe0f1/

    Google Scholar 

  53. Sumrra, S.H., Sahrish, I., Raza, M.A., Ahmad, Z., Zafar, M.N., Chohan, Z.H., Khalid, M., and Ahmed, S., Monatsh. Chem., 2020, vol. 151, no. 4, p. 549. https://doi.org/10.1007/s00706-020-02571-z

  54. Meyerson, S., Appl. Spectrosc., 1955, vol. 9 no. 3, p. 120. https://doi.org/10.1366/000370255774634034

  55. Burlingame, A.L., and Schnoes, H.K., in: Organic Geochemistry, Berlin: Springer, 1969, p. 89. https://doi.org/10.1007/978-3-642-87734-6_4

  56. Tormyshev, V.M., Kur, S.Ya., and Koptyug, V.A., Bull. Acad. Sci. USSR, Div. Chem. Sci., 1977, vol. 26, no. 5, p. 968. https://doi.org/10.1007/BF01152695

  57. Ali, A., Al-Hassani, R., Hussain, D., Jabir, M., and Meteab, H., Nano Biomed. Eng., 2020, vol. 12, no. 1. https://doi.org/10.5101/nbe.v12i1.p75-89

  58. Miessler, G.L., Fischer, P.J., and Tarr, D.A., Inorganic Chemistry, Boston, 2014, p. 422.

  59. Potts, K.T., Chem. Rev., 1961, vol. 61, no. 2, p. 87. https://doi.org/10.1021/cr60210a001

  60. Lawrance, G.A., Introduction to Coordination Chemistry, Chichester: John Wiley & Sons, Ltd., 2010. https://doi.org/10.1002/9780470687123

  61. Ruiz, J., Colacio, E., de Dios López-Gonzalez, J., Sundberg, M., and Kivekäs, R., J. Chem. Soc. Dalton Trans., 1990, no. 9, p. 2747. https://doi.org/10.1039/DT9900002747

  62. Haga, Masaaki., Dodsworth, E.S., Lever, A.B.P., Boone, S.R., and Pierpont, C.G., J. Am. Chem. Soc., 1986, vol. 108, no. 23, p. 7413. https://doi.org/10.1021/ja00283a049

  63. Dar, U.A., Salunke-Gawali, S., Shinde, D., Bhand, S., and Satpute, S., Eng. Sci., 2021, vol. 15, p. 105. https://doi.org/10.30919/es8d492

  64. Park, J.G., Aubrey, M.L., Oktawiec, J., Chakarawet, K., Darago, L.E., Grandjean, F., Long, G.J., and Long, J.R., J. Am. Chem. Soc., 2018, vol. 140, no. 27, p. 8526. https://doi.org/10.1021/jacs.8b03696

  65. Huheey, J.E., Inorganic Chemistry: Principles of Structure and Reactivity, Harper & Row, 1983, p. 1852.

  66. Lomjanský, D., Rajnák, C., Titiš, J., Moncoľ, J., Smolko, L., and Boča, R., Inorg. Chim. Acta, 2018, vol. 483, p. 352. https://doi.org/10.1016/j.ica.2018.08.029

  67. Hisham, M.A., Moustafa, E.M., Moustafa, Y.N., and Ehab, A.A., J. Mol. Struct., 2015, vol. 1086, p. 223. https://doi.org/10.1016/j.molstruc.2015.01.017

    Article  CAS  Google Scholar 

  68. Issa, R.M., Gaber, M., Al-Wakiel, N.A.-E. and Fathalla, S.K., Chin. J. Chem., 2012, vol. 30, no. 3, p. 547. https://doi.org/10.1002/cjoc.201280004

    Article  CAS  Google Scholar 

  69. AbdelLatif, S., and Issa, Y., Nat. Sci., 2010, vol. 2, no. 9, p. 1035. https://doi.org/10.4236/ns.2010.29127

    Article  CAS  Google Scholar 

  70. Khlood, A.-M., J. Mol. Struct., 2022, vol. 1268, p. 133626, https://doi.org/10.1016/j.molstruc.2022.133626

    Article  CAS  Google Scholar 

  71. Eşme, A., J. Balıkesir Univ. Inst. Sci. Technol., 2017, vol. 19, no. 2, p. 99. https://doi.org/10.25092/baunfbed.340553

    Article  Google Scholar 

  72. Karelson, M., Lobanov, V.S., and Katritzky, A.R., Chem Rev., 1996, vol. 96, no. 3, p. 1027. https://doi.org/10.1021/cr950202r

  73. Esme, A. and Sagdinc, S.G., J. Mol. Struct., 2013, vol. 1048, p. 185. https://doi.org/10.1016/j.molstruc.2013.05.022

  74. O’sboyle, N.M., Tenderholt, A.L., and Langner, K.M., J. Comput. Chem., 2008, vol. 29, no. 5, p. 839. https://doi.org/10.1002/jcc.20823

  75. Joshi, B. D., Thakur, G., and Chaudhary, M.K., Sci. World, 2021, no. 14, no. 14, p. 21. https://doi.org/10.3126/sw.v14i14.34978

  76. Gaussian 03, Revision C.02. Gaussian 03, Revision B.04, Gaussian, Inc., Wallingford CT 2004.

  77. GaussView, Version 6.1., 2016.

  78. Hohenberg, P. and Kohn, W., Phys. Rev. B, 1964, vol. 136, no. 3, p. B864. https://doi.org/10.1103/PhysRev.136.B864

  79. Kohn, W., and Sham, L.J., Phys. Rev. A, 1965, vol. 140, no. 4, p. A1133. https://doi.org/10.1103/PhysRev.140.A1133

  80. Stephens, P.J., Devlin, F.J., Chabalowski, C.F., and Frisch, M.J., J. Phys. Chem., 1994, vol. 98, no. 45, p. 11623. https://doi.org/10.1021/j100096a001

  81. Hay, P.J. and Wadt, W.R., J. Chem. Phys., 1985, vol. 82, no. 1, p. 299. https://doi.org/10.1063/1.448975

  82. Sayin, K., Kariper, S.E., Taştan, M., Sayin, T.A., and Karakaş, D., J. Mol. Struct., 2019, vol. 1176, p. 478. https://doi.org/10.1016/j.molstruc.2018.08.103

Download references

ACKNOWLEDGMENTS

The authors appreciate the kind welcome, assistance, and support from the Wasit/Mustansiriyah Universities, College of Science, Department of Chemistry.

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. R. Al-Jorani.

Ethics declarations

The authors declare no conflict of interest.

Additional information

Publisher's Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, A.A., Al-Jorani, K.R. & Merza, M.M. Synthesis and Characterization of New Schiff Base Containing 1,2,4-Triazole-3-thione Moiety and Its Complexes with Some Transition Metal Ions: Spectroscopic and Computational Studies. Russ J Gen Chem 94, 471–487 (2024). https://doi.org/10.1134/S1070363224020221

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363224020221

Keywords:

Navigation