Skip to main content
Log in

Nanofabrication of Metals and Their Compounds for Effective Medicinal and Environmental Applications (A Review)

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

The use of metal complexes has significantly advanced in the treatment of a variety of diseases. The complexes of iron, copper, cobalt, gold, titanium, ruthenium, gallium or platinum atoms have shown various medicinal activities such as anticancer, antimicrobial, antibacterial, antioxidant, antifungal and antiviral etc. However, many existing metal complexes have serious drawbacks such as lipophilicity, low water-solubility and toxicity etc. Currently, these therapeutic agents are usually solubilized using increase concentrations of surfactants and co-solvents, which often lead to unfavourable effects. Recently, researchers have been focusing on investigating the use of nanotechnology as an option to overcome these side effects. Nanoparticles (NPs) and nano medicines require less amount of drug dose which help in reducing the load of metal in the body. The NPs are reported to be less harmful when used for gene and medication delivery. Literature survey shows that nano formulation of drugs improves their characteristics and synergistic functionality. Several classes of nanocarrier systems are broadly demonstrated for packaging and administration of the novel and established drug. These nanocomposites are also been demonstrated to have a numerous other benefit, including decreased tumour growth, decreased systemic toxicity and increased therapeutic efficacy. This review paper has summarized recent developments in the field of nanotechnology and nanofabrication of metals, and their compounds for effective medicinal and environmental applications. The literature was reviewed and collected from leading indexing databases of last 10 years to find how the nanofabrication of metals improves the efficacy. The review paper may help the researchers to come up with effective and non-hazardous solutions in the field of medicinal and environmental chemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Scheme 1.
Scheme 2.
Scheme 3.
Scheme 4.
Scheme 5.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

REFERENCES

  1. Riccardi, L. and Genna, V., Nat. Rev. Chem., 2018, vol. 2, no. 7, p. 100. https://doi.org/10.1038/s41570-018-0018-6

    Article  CAS  Google Scholar 

  2. Dean, K.M., Qin, Y., and Palmer, A.E., Biochim. Biophys. Acta BBA, 2012, vol. 1823, no. 9, p. 1406. https://doi.org/10.1016/j.bbamcr.2012.04.001

    Article  CAS  PubMed  Google Scholar 

  3. Orvig, C. and Abrams, M.J., Chem. Rev., 1999, vol. 99, no. 9, p. 2201. https://doi.org/10.1021/cr980419w

    Article  CAS  PubMed  Google Scholar 

  4. Aliasgharpour, M. and Rahnamaye Farzami, M., Int. J. Med. Invest., 2013, vol. 2, no. 3, p. 115.

    Google Scholar 

  5. Sodhi, R.K. and Paul, S., Cancer Ther. Oncol. Int. J., 2019, vol. 14, no. 1, p. 25.

    Google Scholar 

  6. Wang, S. and Shi, X., Mol. Cell. Biochem., 2001, vol. 222, no. 1, p. 3. https://doi.org/10.1023/A:1017918013293

    Article  CAS  PubMed  Google Scholar 

  7. Beyersmann, D. and Hartwig, A., Arch. Toxicol., 2008, vol. 82, no. 8, p. 493. https://doi.org/10.1007/s00204-008-0313-y

    Article  CAS  PubMed  Google Scholar 

  8. Yedjou, C.G. and Tchounwou, P.B., Met. Ions Biol. Med. Proc. Int. Symp., 2006, vol. 9, p. 298.

    CAS  Google Scholar 

  9. Yedjou, C.G.a nd Tchounwou, P.B., Mol. Cell. Biochem., 2007, vol. 301, no. 1, p. 123. https://doi.org/10.1007/s11010-006-9403-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tchounwou, P.B., Centeno, J.A., and Patlolla, A.K., Mol. Cell. Biochem., 2004, vol. 255, no. 1, p. 47. https://doi.org/10.1023/B:MCBI.0000007260.32981.b9

    Article  CAS  PubMed  Google Scholar 

  11. Patlolla, A.K., Barnes, C., Hackett, D., and Tchounwou, P.B., Int. J. Environ. Res. Public. Health, 2009, vol. 6, no. 2, p. 643. https://doi.org/10.3390/ijerph6020643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yedjou, C.G. and Tchounwou, P.B., Int. J. Environ. Res. Public. Health, 2007, vol. 4, no. 2, p. 132. https://doi.org/10.3390/ijerph2007040007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tchounwou, P.B., Yedjou, C.G., Patlolla, A.K., and Sutton, D.J., in: Molecular, Clinical and Environmental Toxicology, Luch, A., Ed., Basel: Springer, 2012, vol. 3, p. 133. https://doi.org/10.1007/978-3-7643-8340-4_6

  14. Andleeb, S. and Imtiaz-ud-Din, J. Organomet. Chem., 2019, vol. 898, p. 120871. https://doi.org/10.1016/j.jorganchem.2019.120871

    Article  CAS  Google Scholar 

  15. Almeida, J.C.L., Amim, R.S., Pessoa, C., Lourenço, M.C.S., Mendes, I.C., and Lessa, J.A., Polyhedron, 2020, vol. 189, p. 114709. https://doi.org/10.1016/j.poly.2020.114709

    Article  CAS  Google Scholar 

  16. Polyakova, I.V., Borovikova, L.N., Korotkikh, E.M., Kipper, A.I., Pisarev, O.A., Russ. J. Phys. Chem. (A), 2019, vol. 93, no. 8 p. 1567. https://doi.org/10.1134/S0036024419080223

    Article  CAS  Google Scholar 

  17. Wang, R., Li, H., Ip, T.K.Y., and Sun, H., Advances in Inorganic Chemistry, Cambridge: Academic Press, 2020, vol. 75, p. 183. https://doi.org/10.1016/bs.adioch.2019.10.011

  18. Wagstaff, A.J., Ward, A., Benfield, P., and Heel, R.C., Drugs, 1989, vol. 37, no. 2, p. 162. https://doi.org/10.2165/00003495-198937020-00005

    Article  CAS  PubMed  Google Scholar 

  19. Devanabanda, B. and Kasi, A., Oxaliplatin, Treasure Island: Statpearls Publishing, 2022.

  20. Adeyemi, J.O. and Onwudiwe, D.C., Molecules, 2020, vol. 25, p. 305. https://doi.org/10.3390/molecules25020305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jia, P., Ouyang, R., Cao, P., Tong, X., Zhou, X., Lei, T., Zhao, Y., Guo, N., Chang, H., Miao, Y., and Zhou, S., J. Coord. Chem., 2017, vol. 70, no. 13, p. 2175. https://doi.org/10.1080/00958972.2017.1349313

    Article  CAS  Google Scholar 

  22. Keogan, D. and Griffith, D., Molecules, 2014, vol. 19, no. 9, p. 15258. https://doi.org/10.3390/molecules190915258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Salvador, J.A., Figueiredo, S.A., Pinto, R.M., and Silvestre, S.M., Future Med. Chem., 2012, vol. 4, no. 11, p. 1495. https://doi.org/10.4155/fmc.12.95

    Article  CAS  PubMed  Google Scholar 

  24. Hongyan, L., Hongze, S., Curr. Opin. Chem. Biol., 2012, vol. 16, p. 74. doi 10.1016/j.cbpa.2012.01.006.

    Article  Google Scholar 

  25. Yang, Y., Ouyang, R., Xu, L., Guo, N., Li, W., Feng, K., Ouyang, L., Yang, Z., Zhou, S., and Miao, Y., J. Coord. Chem., 2014, vol 68, no. 3, p. 379. https://doi.org/10.1080/00958972.2014.999672

    Article  CAS  Google Scholar 

  26. Shah, S.R., Shah, Z., Khiat, M., Halim, S.A., Khan, A., Hussain, J., Csuk, R., Anwar, M.U., and Al-Harrasi, A., Appl. Organomet. Chem., 2020, vol. 34, no. 10, p. 5842. https://doi.org/10.1002/aoc.5842

    Article  CAS  Google Scholar 

  27. Shah, S.R., Shah, Z., Khan, A., Ahmed, A., Sohani, Hussain, J., Csuk, R., Anwar, M.U., and Al-Harrasi, A., ACS Omega, 2019, vol. 4, no. 25, p. 21559. https://doi.org/10.1021/acsomega.9b03314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Samra, M.M., Hafeez, H., Sadia, A., Imran, M., and Basra, M.A.R., J. Mol. Struct., 2022, vol. 1254, p. 132256. https://doi.org/10.1016/j.molstruc.2021.132256

    Article  CAS  Google Scholar 

  29. Power, P.P., Nature, 2010, vol. 463, no. 7278, p. 171. https://doi.org/10.1038/nature08634

    Article  CAS  PubMed  Google Scholar 

  30. Weetman, C. and Inoue, S., ChemCatChem, 2018, vol. 10, no. 19, p. 4213. doi.org/10.1002/cctc.201800963

    Article  CAS  Google Scholar 

  31. Melen, R.L., Science, 2019, vol. 363, no. 6426, p. 479. https://doi.org/10.1126/science.aau5105

    Article  CAS  PubMed  Google Scholar 

  32. Kim, E., Jeon, Y., Kim, D.Y., Lee, E., and Hyun, S.H., Theriogenology, 2015, vol. 84, no. 2, p. 226. https://doi.org/10.1016/j.theriogenology.2015.03.006

    Article  CAS  PubMed  Google Scholar 

  33. Panosian, N., Heyner, S., Capetola, R.J., and Orzechowski, R. F., J. Immunopharmacol., 1986, vol. 8 p. 347.

    Article  CAS  PubMed  Google Scholar 

  34. Badger, A.M., Schwartz, D.A., Picker, D.H., Dorman, J.W., Bradley, F.C., Cheeseman, E.N., DiMartino, M.J., Hanna, N., and Mirabelli, C.K., J. Med. Chem., 1990, vol. 33, no. 11, p. 2963. https://doi.org/10.1021/jm00173a010

    Article  CAS  PubMed  Google Scholar 

  35. Li, L., Ruan, T., Lyu, Y., and Wu, B., J. Biosci. Med., 2017, vol. 5, no. 7, p. 56. https://doi.org/10.4236/jbm.2017.57006

    Article  CAS  Google Scholar 

  36. DongKui, H., ChunYin, G., and Min, Z., Chin. J. Anim. Nutr., 2018, vol. 30, no. 7, p. 2850.

    Google Scholar 

  37. Mutiri, M.R.A. and Al-Sowayan, N.S., Food Nutr. Sci., 2021, vol. 12, no. 12, p. 1299. https://doi.org/10.4236/fns.2021.1212095

    Article  CAS  Google Scholar 

  38. Xiang, Y., Fu, C., Breiding, T., Sasmal, P.K., Liu, H., Shen, Q., Harms, K., Zhang, L., and Meggers, E., Chem. Commun.i, 2012, vol. 48, no. 57, p. 7131. https://doi.org/10.1039/C2CC32506C

  39. Wheate, N.J., Brodie, C.R., Collins, J.G., Kemp, S., and Aldrich-Wright, J.R., Med. Chem., 2007, vol. 7, no. 6, p. 627. https://doi.org/10.2174/138955707780859413

    Article  CAS  Google Scholar 

  40. Schmidbaur, H., Z. Naturforsch. (B), 2018, vol. 73, no. 5, p. 355. https://doi.org/10.1515/znb-2018-0036

    Article  CAS  Google Scholar 

  41. Parveen S., Appl. Organomet. Chem., 2020, vol. 34, no. 8, p. e5687. https://doi.org/10.1002/aoc.5687

  42. Yang, Z., Jiang, G., Xu, Z., Zhao, S., and Liu, W., Coord. Chem. Rev., 2020, vol. 423, p. 213492. https://doi.org/10.1016/j.ccr.2020.213492

    Article  CAS  Google Scholar 

  43. Zehra, S., Tabassum, S., and Arjmand, F., Drug Discov. Today, 2021, vol. 26, no. 4, p. 1086. https://doi.org/10.1016/j.drudis.2021.01.015

    Article  CAS  PubMed  Google Scholar 

  44. Sadeek, S.A., El-Shwiniy, W.H., Zordok, W.A., and Kotb, E., J. Mol. Struct., 2011, vol. 1006, no. 1, p. 192. https://doi.org/10.1016/j.molstruc.2011.09.009

    Article  CAS  Google Scholar 

  45. Thakur, G.A., Athlekar, S.V., Dharwadkar, S.R., and Shaikh, Acta Pol. Pharma, 2007, vol. 64, p. 9.

    CAS  Google Scholar 

  46. Chitambar, C.R., Int. J. Environ. Res. Public. Health, 2010, vol. 7, no. 5, p. 2337. https://doi.org/10.3390/ijerph7052337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhang, N., Tai, Y., Li, M., Ma, P., Zhao, J., and Niu, J., Dalton Trans., 2014, vol. 43, no. 13, p. 5182. https://doi.org/10.1039/C4DT00077C

    Article  CAS  PubMed  Google Scholar 

  48. El-Habeeb, A.A. and Refat, M.S., Russ. J. Gen. Chem., 2018, vol. 88, no. 10, p. 2163. https://doi.org/10.1134/S1070363218100225

    Article  CAS  Google Scholar 

  49. Rosenberg, B., Van Camp, L., and Krigas, T., Nature, 1965, vol. 205, no. 4972, p. 698. https://doi.org/10.1038/205698a0

    Article  CAS  PubMed  Google Scholar 

  50. Arany, I. and Safirstein, R.L., Semin. Nephrol., 2003, vol. 23, no. 5, p. 460. https://doi.org/10.1016/s0270-9295(03)00089-5

    Article  CAS  PubMed  Google Scholar 

  51. Meng, R.D., Shelton, C.C., Li, Y.M., Qin, L.X., Notterman, D., Paty, P.B., and Schwartz, G.K., Cancer Res., 2009, vol. 69, no. 2, p. 573. https://doi.org/10.1158/0008-5472.CAN-08-2088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Santana-Davila, R., Szabo, A., Arce-Lara, C., Williams, C. D., Kelley, M.J., and Whittle, J., J. Thorac. Oncol. Off. Publ. Int. Assoc. Study Lung Cancer, 2014, vol. 9, p. 702. https://doi.org/10.1097/JTO.0000000000000146

    Article  CAS  Google Scholar 

  53. Saif, M.W. and Reardon, J., Ther. Clin. Risk Manag., 2005, vol. 1 p. 249.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. AHS Cancer Control Alberta. Cisplatin, Carboplatin, and Oxaliplatin Interactions with Plasma Proteins; Clinical trial registration NCT00131586; clinicaltrials.gov, 2016. https://clinicaltrials.gov/ct2/show/NCT00131586

  55. Bouché, M., Hognon, C., Grandemange, S., Monari, A., and Gros, P.C., Dalton Trans., 2020, vol. 49, no. 33, p. 11451. https://doi.org/10.1039/D0DT02135K

    Article  PubMed  Google Scholar 

  56. Pansuriya, P. and Patel, M., J. Enzyme Inhib. Med. Chem., 2008, vol. 23, p. 230. https://doi.org/10.1080/14756360701474657

    Article  CAS  PubMed  Google Scholar 

  57. Mojžišová, G., Mojžiš, J., and Vašková, J., Acta Biochim. Pol., 2014, vol. 61, no. 4, p. 651.

    Article  PubMed  Google Scholar 

  58. da Silva Maia, P.I., Deflon, V.M., and Abram, U., Future Med. Chem., 2014, vol. 6, p. 1515. https://doi.org/10.4155/fmc.14.87

    Article  CAS  Google Scholar 

  59. Yue, S., Luo, M., Liu, H., and Wei, S., Front. Chem., 2020, vol. 8, p. 543. https://doi.org/10.3389/fchem.2020.00543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Allardyce, C.S. and Paul, D., Platinum Metals Rev., 2001, vol. 45, no. 2, p. 64.

    Google Scholar 

  61. Lin, K., Zhao, Z.Z., Bo, H.B., Hao, X.J., and Wang, J.Q., Front. Pharmacol., 2018, vol. 9, p. 1323. https://doi.org/10.3389/fphar.2018.01323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Iakovidis, I., Delimaris, I., and Piperakis, S.M., Mol. Biol. Int., 2011, vol. 2011, p. 594529. https://doi.org/10.4061/2011/594529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kennedy, D.C., McKay, C.S., Legault, M.C.B., Danielson, D.C., Blake, J.A., Pegoraro, A.F., Stolow, A., Mester, Z., and Pezacki, J.P., J. Am. Chem. Soc., 2011, vol. 133, no. 44, p. 17993. https://doi.org/10.1021/ja2083027

    Article  CAS  PubMed  Google Scholar 

  64. Tardito, S. and Marchio, L., Curr. Med. Chem., 2009, vol. 16, no. 11, p. 1325. https://doi.org/10.2174/092986709787846532

    Article  CAS  PubMed  Google Scholar 

  65. Marı́n-Hernández, A., Gracia-Mora, I., Ruiz-Ramı́rez, L., and Moreno-Sánchez, R., Biochem. Pharmacol., 2003, vol. 65, p. 1979. https://doi.org/10.1016/S0006-2952(03)00212-0

    Article  CAS  PubMed  Google Scholar 

  66. Salga, M.S., Ali, H., Abdulla, M., and Abdelwahab, S., Int. J. Mol. Sci., 2012, vol. 13, p. 1393. https://doi.org/10.3390/ijms13021393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Porchia, M., Pellei, M., Bello, F.D., and Santini, C., Molecules, 2020, vol. 25, no. 24, p. 5814. https://doi.org/10.3390/molecules25245814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Da Silva, F.L.O., Marques, M.B.D.F., Kato, K.C., and Carneiro, G., Expert Opin. Drug Discov., 2020, vol. 15, no. 7, p. 853. https://doi.org/10.1080/17460441.2020.1750591

    Article  CAS  PubMed  Google Scholar 

  69. Skyner, R.E., McDonagh, J.L., Groom, C.R., Mourik, T., and Mitchell, J.B.O., Phys. Chem. Chem. Phys., 2015, vol. 17, no. 9, p. 6174. https://doi.org/10.1039/C5CP00288E

    Article  CAS  PubMed  Google Scholar 

  70. Tomasi, J., Mennucci, B., and Cammi, R., Chem. Rev., 2005, vol. 105, no. 8, p. 2999. https://doi.org/10.1021/cr9904009

    Article  CAS  PubMed  Google Scholar 

  71. Cramer, C.J. and Truhlar, D.G., Chem. Rev., 1999, vol. 99, no. 8, p. 2161. https://doi.org/10.1021/cr960149m

    Article  CAS  PubMed  Google Scholar 

  72. Abramov, Y.A., Mol. Pharm., 2015, vol. 12, no. 6, p. 2126. https://doi.org/10.1021/acs.molpharmaceut.5b00119

    Article  CAS  PubMed  Google Scholar 

  73. Stella, V.J. and Nti-Addae, K.W., Adv. Drug Deliv. Rev., 2007, vol. 59, no. 7, p. 677. https://doi.org/10.1016/j.addr.2007.05.013

    Article  CAS  PubMed  Google Scholar 

  74. Sahoo, C.K., Reddy, G.S., Vojjala, A., and Reddy, B.V., Innoriginal Int. J. Sci., 2018, vol. 1, p. 1. https://www.innoriginal.com/index.php/iijs/article/view/128

    Google Scholar 

  75. Jindal, K., Int. Res. J. Pharm., 2017, vol. 8, p. 11. https://doi.org/10.7897/2230-8407.0811210

    Article  CAS  Google Scholar 

  76. Savjani, K.T., Gajjar, A.K., and Savjani, J.K., ISRN Pharm. 2012, vol. 2012, p. 1. https://doi.org/10.5402/2012/195727

  77. Clarke, M. J., Zhu, F., and Frasca, D.R., Chem. Rev., 1999, vol. 99, no. 9, p. 2511. https://doi.org/10.1021/cr9804238

    Article  CAS  PubMed  Google Scholar 

  78. Baulieu, E., Forman, D.T., Ingelman-Sundberg, M., Jaenicke, L., Kellen, J.A., Nagai, Y., Springer, G.F., Träger, L., Will-Shahab, L., and Wittliff, J.L., in Progress in Clinical Biochemistry and Medicine, Berlin: Springer, 1989, p. 25. https://doi.org/10.1007/978-3-642-74760-1_2

  79. Magallon, J., Vu, P., Reeves, C., Kwan, S., Phan, K., Oakley-Havens, C.L., Rocha, K., Jimenez, V., Ramirez, M.S., and Tolmasky, M.E., Sci. Rep., 2022, vol. 12, no. 1, p. 285. https://doi.org/10.1038/s41598-021-04724-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Zhang, P. and Sadler, P.J., J. Organomet. Chem., 2017, vol. 839, p. 5. https://doi.org/10.1016/j.jorganchem.2017.03.038

    Article  CAS  Google Scholar 

  81. Egorova, K.S. and Ananikov, V.P., Organometallics, 2017, vol. 36, no. 21, p. 4071. https://doi.org/10.1021/acs.organomet.7b00605

    Article  CAS  Google Scholar 

  82. Remelli, M., Peana, M., Medici, S., Delogu, L.G., and Zoroddu, M.A., Dalton Trans., 2013, vol. 42, no. 17, p. 5964. https://doi.org/10.1039/C2DT32222F

    Article  CAS  PubMed  Google Scholar 

  83. Templeton, D.M., Toxics, 2015, vol. 3, no. 2, p. 170. https://doi.org/10.3390/toxics3020170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. De Jong, W.H. and Borm, P.J., Int. J. Nanomedicine, 2008, vol. 3, no. 2, p. 133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Patra, J.K., Das, G., Fraceto, L.F., Campos, E.V.R., del Rodriguez-Torres, M.P., Acosta-Torres, L.S., Diaz-Torres, L.A., Grillo, R., Swamy, M.K., Sharma, S., Habtemariam, S., and Shin, H.S., J. Nanobiotechnology, 2018, vol. 16 no. 1 p. 71. https://doi.org/10.1186/s12951-018-0392-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Mitchell, M.J., Billingsley, M.M., Haley, R.M., Wechsler, M.E., Peppas, N.A., and Langer, R., Nat. Rev. Drug Discov., 2120, vol. 20, no. 2, p. 101. https://doi.org/10.1038/s41573-020-0090-8

    Article  CAS  Google Scholar 

  87. Chandrakala, V., Aruna, V., and Angajala, G., Emergent Mater., 2022, vol. 5, p. 1593. https://doi.org/10.1007/s42247-021-00335-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Yetisgin, A.A., Cetinel, S., Zuvin, M., Kosar, A., and Kutlu, O., Molecules, 2020, vol. 25, p. 2193. https://doi.org/10.3390/molecules25092193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Elkodous, M.A., Olojede, S.O., Morsi, M., and ElSayyad, G.S., RSC Adv., 2021, vol. 11, p. 26463. https://doi.org/10.1039/D1RA04835J

    Article  Google Scholar 

  90. Maldonado, C.R., Salassa, L., Gomez-Blanco, N., and Mareque-Rivas, J.C., Coord. Chem. Rev., 2013, vol. 257, nos. 19–20, p. 2668. https://doi.org/10.1016/j.ccr.2013.04.014

    Article  CAS  Google Scholar 

  91. Abdel-Rahman, L.H., Abu-Dief, A.M., Newair, E.F., and Hamdan, S.K., J. Photochem. Photobiol. (B), 2016, vol. 160, p. 18. https://doi.org/10.1016/j.jphotobiol.2016.03.040

    Article  CAS  PubMed  Google Scholar 

  92. Wang, Y., Mirken, C.A., and Park, S.J., ACS Nano, 2009, vol. 3, no. 5, p. 1049. https://doi.org/10.1021/nn900448g

    Article  CAS  PubMed  Google Scholar 

  93. Gratton, S.E.A., Williams, S.S., Napier, M.E., Pohlhaus, P.D., Zhou, Z., Wiles, K.B., Maynor, B.W., Shen, C., Olafsen, T., Samulski, E.T., and DeSimone, J.M., Acc. Chem. Res., 2008, vol. 41, no. 12, p. 1685. https://doi.org/10.1021/ar8000348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Pokroy, B., Kang, S.H., Mahadevan, L., and Aizenberg, J., Science, 2009, vol. 323, no. 5911, p. 237. https://doi.org/10.1126/science.1165607

    Article  CAS  PubMed  Google Scholar 

  95. Sidorenko, A., Krupenkin, T., Taylor, A., Fratzl, P., Aizenberg, J., Science, 2007, vol. 315, no. 5811, p. 487. https://doi.org/10.1126/science.1135516

    Article  CAS  PubMed  Google Scholar 

  96. Singh, J., Dutta, T., Kim, K.H., Rawat, M., Samddar, P., and Kumar, P., J. Nanobiotechnology, 2018, vol. 16, no. 1, p. 84. https://doi.org/10.1186/s12951-018-0408-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Yu, H.D., Regulacio, M.D., Ye, E., and Han, M.Y., Chem. Soc. Rev., 2013, vol. 42, no. 14, p. 6006. https://doi.org/10.1039/C3CS60113G

    Article  CAS  PubMed  Google Scholar 

  98. Iravani, S., Green Chem., 2011, vol. 13, no. 10, p. 2638. https://doi.org/10.1039/C1GC15386B

    Article  CAS  Google Scholar 

  99. Ji, X., Kong, N., Wang, J., Li, W., Xiao, Y., Gan, S.T., Zhang, Y., Li, Y., Song, X., Xiong, Q., Shi, S., Li, Z., Tao, W., Zhang, H., Mei, L., and Shi, J., Adv. Mater., 2018, vol. 30, no. 36, p. 1803031. https://doi.org/10.1002/adma.201803031

    Article  CAS  Google Scholar 

  100. Lu, W., He, K., Zhao, G., Song, B., Zhou, J., Dong, W., and Han, G., RSC Adv., 2019, vol. 9, no. 40, p. 22772. https://doi.org/10.1039/C9RA03893K

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Garrigue, P., Delville, M.H., Labrugère, C., Cloutet, E., Kulesza, P.J., Morand, J.P., and Kuhn, A., Chem. Mater., 2004, vol. 16, no. 16, p. 2984. https://doi.org/10.1021/cm049685i

    Article  CAS  Google Scholar 

  102. Ijaz, I., Gilani, E., Nazir, A., and Bukhari, A., Green Chem. Lett. Rev., 2020, vol. 13, no. 3, p. 223. https://doi.org/10.1080/17518253.2020.1802517

    Article  CAS  Google Scholar 

  103. Biswas, A., Bayer, I.S., Biris, A.S., Wang, T., Dervishi, E., and Faupel, F., Adv. Colloid Interface Sci., 2012, vol. 170, no. 1, p. 2. https://doi.org/10.1016/j.cis.2011.11.001

    Article  CAS  PubMed  Google Scholar 

  104. Chen, Y., Xu, X., Li, C., Bendavid, A., Westerhausen, M.T., Bradac, C., Toth, M., Aharonovich, I., and Tran, T.T., Small, 2021, vol. 17, no. 17, p. 2008062. https://doi.org/10.1002/smll.202008062

    Article  CAS  Google Scholar 

  105. Thanh, N.T.K., Maclean, N., and Mahiddine, S., Chem. Rev., 2014, vol. 114, no. 15, p. 7610. https://doi.org/10.1021/cr400544s

    Article  CAS  PubMed  Google Scholar 

  106. Kaur, P. and Kumar, N., J. Crit. Rev., 2021, vol. 8, no. 3, p. 7.

    Google Scholar 

  107. Al-qaim, Z., J. Res. Lepidoptera, 2020, vol. 51, p. 1034. https://doi.org/10.36872/LEPI/V51I2/301156

    Article  Google Scholar 

  108. Upadhyay, S., Parekh, K., and Pandey, B., J. Alloys Compd., 2016, vol. 678, p. 478. https://doi.org/10.1016/j.jallcom.2016.03.279

    Article  CAS  Google Scholar 

  109. Argueta-Figueroa, L., Morales-Luckie, R.A., Scougall-Vilchis, R.J., and Olea-Mejía, O.F., Prog. Nat. Sci. Mater. Int., 2014, vol. 24, no. 4, p. 321. https://doi.org/10.1016/j.pnsc.2014.07.002

    Article  CAS  Google Scholar 

  110. nanoComposix. UV-Visible NP Analysis. nanoComposix. https://nanocomposix.com/products/uv-visible-NP-analysis(accessed2022-12-09)

  111. Blanco Andujar, C., Ph.D. Thesis (Chem.), London, 2014.

  112. Malik, M.A., Alshehri, A.A., and Patel, R., J. Mater. Res. Technol., 2021, vol. 12, p. 455. https://doi.org/10.1016/j.jmrt.2021.02.063

    Article  CAS  Google Scholar 

  113. Lu, L.T., Ph.D. Thesis (Chem.), Liverpool, 2011.

  114. Santra, D. and Sen, K., Mater. Today Chem., 2020, vol. 18, p. 100365. https://doi.org/10.1016/j.mtchem.2020.100365

    Article  CAS  Google Scholar 

  115. Sarma, D.D., Santra, P.K., Mukherjee, S., and Nag, A., Chem. Mater., 2013, vol. 25, no. 8, p. 1222. https://doi.org/10.1021/cm303567d

    Article  CAS  Google Scholar 

  116. Rahdar, A., Amini, N., Askari, F., and Susan, M.A.B.H., J. Nanoanalysis, 2019. https://doi.org/10.22034/jna.2019.575819.1108

  117. Vazquez-Munoz, R., Arellano-Jimenez, M.J., and Lopez-Ribot, J.L., MethodsX, 2020, vol. 7, p. 100894. https://doi.org/10.1016/j.mex.2020.100894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Bustos, A.R.M., Encinar, J.R., and Sanz-Medel, A., Anal. Bioanal. Chem., 2013, vol. 405, no. 17, p. 5637. https://doi.org/10.1007/s00216-013-7014-y

    Article  CAS  Google Scholar 

  119. Harkness, K.M., Cliffel, D. E., and McLean, J.A., Analyst, 2010, vol. 135, no. 5, p. 868. https://doi.org/10.1039/B922291J

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Reimer, L., Transmission Electron Microscopy: Physics of Image Formation and Microanalysis, New York: Springer, 2013, p. 587.

  121. Chandra, S., Kumar, A., and Tomar, P.K., J. Saudi Chem. Soc., 2014, vol. 18, no. 5, p. 437. https://doi.org/10.1016/j.jscs.2011.09.008

    Article  CAS  Google Scholar 

  122. Mazzaglia, A., Scolaro, L.M., Mezzi, A., Kaciulis, S., Caro, T.D., Ingo, G.M., and Padeletti, G., J. Phys. Chem. (C), 2009, vol. 113, no. 29, p. 12772. https://doi.org/10.1021/jp903673x

    Article  CAS  Google Scholar 

  123. Das, P.E., Majdalawieh, A.F., Abu-Yousef, I.A., Narasimhan, S., and Poltronieri, P., Materials, 2020, vol. 13, no. 4, p. 876. https://doi.org/10.3390/ma13040876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Salem, A., Saion, E., Al-Hada, N.M., Kamari, H.M., Shaari, A.H., and Radiman, S., Results Phys., 2017, vol. 7, p. 1175. https://doi.org/10.1016/j.rinp.2017.03.011

    Article  Google Scholar 

  125. Ankamwar, B., Kirtiwar, S., and Shukla, A.C., Adv. Pharm. Biotechnol., 2020, p. 221. https://doi.org/10.1007/978-981-15-2195-9_17

  126. Alshorifi, F.T., Alswat, A.A., and Salama, R.S., Heliyon, 2022, vol. 8, no. 6, p. e09652. https://doi.org/10.1016/j.heliyon.2022.e09652

  127. Armendariz, V., Herrera, I., Peralta-Videa, J.R., JoseYacaman, M., Troiani, H., Santiago, P., and GardeaTorresdey, J.L., J. NP Res., 2004, vol. 6, no. 4, p. 377. https://doi.org/10.1007/s11051-004-0741-4

    Article  CAS  Google Scholar 

  128. Bali, R. and Harris, A.T., Ind. Eng. Chem. Res., 2010, vol. 49 no. 24 p. 12762. https://doi.org/10.1021/ie101600m

    Article  CAS  Google Scholar 

  129. Bilal, M., Rasheed, T., Iqbal, H.M.N., Hong Bo, H., and Xue Hong, Z., Int. J. Pharmacol., 2017, vol. 13, no. 7, p. 832.

    Article  CAS  Google Scholar 

  130. Atarod, M., Nasrollahzadeh, M., and Mohammad Sajadi, S., J. Colloid Interface Sci., 2016, vol. 462, p. 272. https://doi.org/10.1016/j.jcis.2015.09.073

    Article  CAS  PubMed  Google Scholar 

  131. Al-Radadi, N.S., Arab. J. Chem., 2019, vol. 12, no. 3, p. 330. https://doi.org/10.1016/j.arabjc.2018.05.008

    Article  CAS  Google Scholar 

  132. Lashari, A., Hassan, S.M., and Mughal, S.S., Am. J. Appl. Sci. Res., 2022, vol. 8, no. 3, p. 58.

    Google Scholar 

  133. Thirumurugan, A., Aswitha, P., Kiruthika, C., Nagarajan, S., and Christy, A.N., Mater. Lett., 2016, vol. 170, p. 175. https://doi.org/10.1016/j.matlet.2016.02.026

    Article  CAS  Google Scholar 

  134. Soni, N. and Prakash, S., Am. J. Nanotechnol., 2011, vol. 2, no. 1, p. 112. https://doi.org/10.3844/ajnsp.2011.112.121

    Article  CAS  Google Scholar 

  135. Gericke, M. and Pinches, A., Hydrometallurgy, 2006, vol. 83, no. 1, p. 132. https://doi.org/10.1016/j.hydromet.2006.03.019

    Article  CAS  Google Scholar 

  136. Hodoroaba, V.D., Rades, S., and Unger, W.E.S., Surf. Interface Anal., 2014, vol. 46, nos. 10–11, p. 945. https://doi.org/10.1002/sia.5426

    Article  CAS  Google Scholar 

  137. Phung, X., Groza, J., Stach, E.A., Williams, L.N., and Ritchey, S.B., Mater. Sci. Eng. (A), 2003, vol. 359, no. 1, p. 261. https://doi.org/10.1016/S0921-5093(03)00348-4

    Article  CAS  Google Scholar 

  138. Parker, H.L., Rylott, E.L., Hunt, A.J., Dodson, J.R., Taylor, A.F., Bruce, N.C., Clark, J.H., PLoS One, 2014, vol. 9, no. 1, p. 87192. https://doi.org/10.1371/journal.pone.0087192

    Article  CAS  Google Scholar 

  139. Ho, V.A., Le, P.T., Nguyen, T.P., Nguyen, C.K., Nguyen, V.T., and Tran, N.Q., J. Nanomater., 2015, vol. 16, no. 1, Article no. 13. https://doi.org/10.1155/2015/241614

  140. Kuchibhatla, S.V.N.T., Karakoti, A.S., Baer, D.R., Samudrala, S., Engelhard, M.H., Amonette, J.E., Thevuthasan, S., and Seal, S., J. Phys. Chem. (C), 2012, vol. 116, no. 26, p. 14108. https://doi.org/10.1021/jp300725s

    Article  CAS  Google Scholar 

  141. Zheng, B., Kong, T., Jing, X., Odoom-Wubah, T., Li, X., Sun, D., Lu, F., Zheng, Y., Huang, J., and Li, Q., J. Colloid Interface Sci., 2013, vol. 396, p. 138. https://doi.org/10.1016/j.jcis.2013.01.021

    Article  CAS  PubMed  Google Scholar 

  142. Munir, H., Bilal, M., Mulla, S. I., Abbas Khan, H., and Iqbal, H.M.N., Adv. Sci. Technol. Innov., 2021, p. 75. https://doi.org/10.1007/978-3-030-67884-5_4

  143. Balamurugan, M., Kandasamy, N., Saravanan, S., and Ohtani, N., Japan J. Appl. Phys., 2014, vol. 53. https://doi.org/10.7567/JJAP.53.05FB19

  144. Chauhan, A., Zubair, S., Tufail, S., Sherwani, A., Sajid, M., Raman, S.C., Azam, A., and Owais, M., Int. J. Nanomedicine, 2011, vol. 6, p. 2305. https://doi.org/10.2147/IJN.S23195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. de Jesus, R.A., de Assis, G.C., de Oliveira, R.J., Costa, J.A.S., da Silva, C.M.P., Bilal, M., Iqbal, H.M.N., Ferreira, L.F.R., and Figueiredo, R.T., Environ. Technol. Innov., 2021, vol. 24, p. 101851. https://doi.org/10.1016/j.eti.2021.101851

    Article  CAS  Google Scholar 

  146. Johnson, C.A., Sharma, S., Subramaniam, B., and Borovik, A.-S., J. Am. Chem. Soc., 2005, vol. 127, no. 27, p. 9698. https://doi.org/10.1021/ja052040e

    Article  CAS  PubMed  Google Scholar 

  147. Barry, N.P.E., Sadler, P.J., ACS Nano, 2013, vol. 7, no. 7, p. 5654. https://doi.org/10.1021/nn403220e

    Article  CAS  PubMed  Google Scholar 

  148. Jawoor, S.S., Patil, S.A., Kumbar, M., and Ramawadgi, P.B., J. Mol. Struct., 2018, vol. 1164, p. 378. https://doi.org/10.1016/j.molstruc.2018.03.084

    Article  CAS  Google Scholar 

  149. El-Wakiel, N., Appl. Organomet. Chem., 2018, vol. 32, no. 4, p. 4229. https://doi.org/10.1002/aoc.4229

    Article  CAS  Google Scholar 

  150. Mahmoud, W., Refaat, A.M., and Mohamed, G.G., Egypt. J. Chem., 2020, vol. 63, no. 6, p. 2157. https://doi.org/10.21608/ejchem.2019.18109.2104

    Article  Google Scholar 

  151. Taha, R.H., in: Green Chemstry Applications, Eyvaz, M. and Yüksel, E., Eds., IntechOpen, 2019, p. 1. https://doi.org/10.5772/intechopen.83558

  152. Ganesan, RM. and Gurumallesh Prabu, H., Arab. J. Chem., 2019, vol. 12, no. 8, p. 2166. https://doi.org/10.1016/j.arabjc.2014.12.017

    Article  CAS  Google Scholar 

  153. Al-Qasmi, N., Al-Gethami, W., Saleh, D., and Abuziad, A., J. Mater. Res. Technol., 2020, vol. 9, no. 6, p. 13036. https://doi.org/10.1016/j.jmrt.2020.09.053

    Article  CAS  Google Scholar 

  154. Al-Sabawi, E.N., Ahmed, S.M., Jerjis, H.M., Khairy, M., Alduaij, O.K., and Yousef, T.A., App. Organometal. Chem., 2022, vol. 36, no. 5, p. e6654. https://doi.org/10.1002/aoc.6654

  155. Govindrajan, K., Parasuraman, V., Perumalswamy, P., Colak, I., and Hailemeskel, B.Z., J. Nanomater., 2022, vol. 2022, Article ID 1678894. https://doi.org/10.1155/2022/1678894

  156. Pagar, K., Ghotekar, S., Pagar, T., Nikam, A., Pansambal, S., Oza, R., Sanap, D., and Dabhane, H., Asian J. Nanosci. Mater., 2020, vol. 31, p. 5. https://doi.org/10.26655/AJNANOMAT.2020.1.2

    Article  Google Scholar 

  157. Abouzayed, F.I., Emam, S.M., Abouel-Enein, S.A., J. Mol. Struct., 2020, vol. 1216, Article ID 128314. https://doi.org/10.1016/j.molstruc.2020.128314

  158. Vyas, J. and Rana, S., Int. J. Phytomed., 2017, vol. 9, no. 4 p. 634.

    Article  CAS  Google Scholar 

  159. Gundi, L., Dass, R.S., and Kalagatur, N.K., Front. Microbiol., 2019, vol. 10, p. 931. https://doi.org/10.3389/fmicb.2019.00931

    Article  Google Scholar 

  160. Muthuvel, A., Jothibas, M., and Manoharan, C., Nanotechnol. Environ. Eng., 2020, vol. 5, no. 2, p. 14. https://doi.org/10.1007/s41204-020-00078-w

    Article  CAS  Google Scholar 

  161. Medhi, R., Srinoi, P., Ngo, N., Tran, H.V., and Lee, T.R., ACS Appl. Nano Mater., 2020, vol. 3, no. 9, p. 8557. https://doi.org/10.1021/acsanm.0c01978

    Article  CAS  Google Scholar 

  162. Rudramurthy, G.R., Swamy, M.K., Sinniah, U.R., and Ghasemzadeh, A., Molecules, 2016, vol. 21, no. 7, p. 836. https://doi.org/10.3390/molecules21070836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Lara, H.H., Ayala-Nuñez, N.V., Ixtepan-Turrent, L., and Rodriguez-Padilla, C., J. Nanobiotechnology, 2010, vol. 8, no. 1, p. 1. https://doi.org/10.1186/1477-3155-8-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Di Gianvincenzo, P., Marradi, M., Martínez-Ávila, O.M., Bedoya, L.M., Alcamí, J., and Penadés, S., Bioorg. Med. Chem. Lett., 2010, vol. 20, no. 9, p. 2718. https://doi.org/10.1016/j.bmcl.2010.03.079

    Article  CAS  PubMed  Google Scholar 

  165. Sametband, M., Shukla, S., Meningher, T., Hirsh, S., Mendelson, E., Sarid, R., and Gedanken, A., MedChemComm, 2011, vol. 2, no. 5, p. 421. https://doi.org/10.1039/C0MD00229A

    Article  CAS  Google Scholar 

  166. Osminkina, L.A., Agafilushkina, S.N., Kropotkina, E.A., Saushkin, N.Y., Bozhev, I.V., Abramchuk, S.S., Samsonova, J.V., and Gambaryan, A.S., Bioact. Mater., 2022, vol. 7, p. 39. https://doi.org/10.1016/j.bioactmat.2021.06.001

    Article  CAS  PubMed  Google Scholar 

  167. Luo, S.X.L., Liu, R.Y., Lee, S., and Swager, T.M., J. Am. Chem. Soc., 2021, vol. 143, no. 27, p. 10441. https://doi.org/10.1021/jacs.1c05439

    Article  CAS  PubMed  Google Scholar 

  168. Xu, C., Lu, M., Yan, B., Zhan, Y., Balaya, P., Lu, L., and Lee, J.Y., ChemSusChem, 2016, vol. 9, no. 21, p. 3067. https://doi.org/10.1002/cssc.201600917

    Article  CAS  PubMed  Google Scholar 

  169. Wu, F., Niu, Y., Huang, X., Mei, Y., Wu, X., Zhong, C., and Hu, W., ACS Sustain. Chem. Eng., 2018, vol. 6, no. 8, p. 10545. https://doi.org/10.1021/acssuschemeng.8b01890

    Article  CAS  Google Scholar 

  170. Zhang, M., Liu, Y.Q., and Ye, B.C., Analyst, 2012, vol. 137, no. 3, p. 601. https://doi.org/10.1039/C1AN15909G

    Article  CAS  PubMed  Google Scholar 

  171. Mehta, V., Kumar, M.A., and Kailasa, S.K., Ind. Eng. Chem. Res., 2013, vol. 52, no. 12, p. 4414. https://doi.org/10.1021/ie302651f

  172. Que, E.L., Domaille, D.W., and Chang, C.J., Chem. Rev., 2008, vol. 108, no. 5, p. 1517. https://doi.org/10.1021/cr078203u

    Article  CAS  PubMed  Google Scholar 

  173. Aragay, G., Pons, J., and Merkoçi, A., Chem. Rev., 2011, vol. 111, no. 5, p. 3433. https://doi.org/10.1021/cr100383r

    Article  CAS  PubMed  Google Scholar 

  174. Nolan, E.M. and Lippard, S.J., Chem. Rev., 2008, vol. 108, no. 9, p. 3443. https://doi.org/10.1021/cr068000q

    Article  CAS  PubMed  Google Scholar 

  175. Ray, P.C., Chem. Rev., 2010, vol. 110, no. 9, p. 5332. https://doi.org/10.1021/cr900335q

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Annadhasan, M., Muthukumarasamyvel, T., Sankar Babu, V.R., and Rajendiran, N., ACS Sustain. Chem. Eng., 2014, vol. 2, no. 4, p. 887. https://doi.org/10.1021/sc400500z

    Article  CAS  Google Scholar 

  177. Maiti, S., Barman, G., and Konar Laha, J., Appl. Nanosci., 2016, vol. 6, no. 4, p. 529. https://doi.org/10.1007/s13204-015-0452-4

    Article  CAS  Google Scholar 

  178. Karthiga, D. and Anthony, S.P., RSC Adv., 2013, vol. 3, no. 37, p. 16765. https://doi.org/10.1039/C3RA42308E

    Article  CAS  Google Scholar 

  179. Kalita, E. and Baruah, J., Colloidal Metal Oxide NPs, Elsevier, 2020, p. 525. https://doi.org/10.1016/B978-0-12-813357-6.00014-0

  180. Abdel Maksoud, M.I.A., El-Sayyad, G.S., Abokhadra, A., Soliman, L.I., El-Bahnasawy, H.H., and Ashour, A.H., J. Mater. Sci. Mater. Electron., 2020, vol. 31, no. 3, p. 2598. https://doi.org/10.1007/s10854-019-02799-4

    Article  CAS  Google Scholar 

  181. Ajiboye, T.O., Oyewo, O.A., and Onwudiwe, D.C., Environ. Chem. Lett., 2021, vol. 19, no. 5, p. 3789. https://doi.org/10.1007/s10311-021-01263-2

    Article  CAS  Google Scholar 

  182. Karthik, V., Selvakumar, P., Senthil Kumar, P., Vo, D.V.N., Gokulakrishnan, M., Keerthana, P., Tamil Elakkiya, V., and Rajeswari, R., Environ. Chem. Lett., 2021, vol. 19, no. 5, p. 3631. https://doi.org/10.1007/s10311-021-01262-3

    Article  CAS  Google Scholar 

  183. He, X., Kai, T. and Ding, P., Environ. Chem. Lett., 2021, vol. 19, no. 6, p. 4563. https://doi.org/10.1007/s10311-021-01295-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Chinthala, M., Balakrishnan, A., Venkataraman, P., Manaswini Gowtham, V., and Polagani, R.K., Environ. Chem. Lett., 2021, vol. 19, no. 6, p. 4415. https://doi.org/10.1007/s10311-021-01299-4

    Article  CAS  Google Scholar 

  185. Nakkala, J.R., Bhagat, E., Suchiang, K., and Sadras, S.R., J. Mater. Sci. Technol., 2015, vol. 31, no. 10, p. 986. https://doi.org/10.1016/j.jmst.2015.07.002

    Article  CAS  Google Scholar 

  186. Varadavenkatesan, T., Selvaraj, R., and Vinayagam, R., J. Mol. Liq., 2016, vol. 221, p. 1063. https://doi.org/10.1016/j.molliq.2016.06.064

    Article  CAS  Google Scholar 

  187. Stan, M., Popa, A., Toloman, D., Dehelean, A., Lung, I., and Katona, G., Mater. Sci. Semicond. Process, 2015, vol. 39, p. 23. https://doi.org/10.1016/j.mssp.2015.04.038

    Article  CAS  Google Scholar 

  188. Thandapani, K., Kathiravan, M., Namasivayam, E., Padiksan, I. A., Natesan, G., Tiwari, M., Giovanni, B., and Perumal, V., Environ. Sci. Pollut. Res., 2018, vol. 25, no. 11, p. 10328. https://doi.org/10.1007/s11356-017-9177-0

    Article  CAS  Google Scholar 

  189. Pradeep, T. and Anshup, Thin Solid Films, 2009, vol. 517, no. 24, p. 6441. https://doi.org/10.1016/j.tsf.2009.03.195

    Article  CAS  Google Scholar 

  190. Tsuda, A. and Konduru, N.V., NanoImpact, 2016, vol. 2, p. 38. https://doi.org/10.1016/j.impact.2016.06.002

    Article  PubMed  PubMed Central  Google Scholar 

  191. Jyoti, K. and Singh, A., J. Genet. Eng. Biotechnol., 2016, vol. 14, no. 2, p. 311. https://doi.org/10.1016/j.jgeb.2016.09.005

    Article  PubMed  PubMed Central  Google Scholar 

  192. George, M., Ajeesha, T.L., Manikandan, A., Anantharaman, A., Jansi, R.S., Kumar, E.R., Slimani, Y., Almessiere, M.A., and Baykal, A., J. Phys. Chem. Solids, 2021, vol. 153, p. 110010. https://doi.org/10.1016/j.jpcs.2021.110010

    Article  CAS  Google Scholar 

  193. Jun, B.M., Elanchezhiyan, S.SD., Yoon, Y., Wang, D., Kim, S., Muthu Prabhu, S., and Park, C.M., Chem. Eng. J., 2020, vol. 393, p. 124733. https://doi.org/10.1016/j.cej.2020.124733

    Article  CAS  Google Scholar 

  194. Habte, L., Shiferaw, N., Mulatu, D., Thenepalli, T., Chilakala, R., and Ahn, J.W., Sustainability, 2019, vol. 11, no. 11, p. 3196. https://doi.org/10.3390/su11113196

    Article  CAS  Google Scholar 

  195. Balamurugan, M., Kandasamy, N., Saravanan, S., and Ohtani, N., Japan. J. Appl. Phys., 2014, vol. 53, p. 05FB19. https://doi.org/10.7567/JJAP.53.05FB19

    Article  Google Scholar 

  196. Hu, J., Lu, Q., Wu, C., Liu, M., Li, H., Zhang, Y., and Yao, S., Langmuir, 2018, vol. 34, no. 30, p. 8932. https://doi.org/10.1021/acs.langmuir.8b01543

    Article  CAS  PubMed  Google Scholar 

  197. Amani, H., Habibey, R., Shokri, F., Hajmiresmail, S.J., Akhavan, O., Mashaghi, A., and Pazoki-Toroudi, H., Sci. Rep., 2019, vol. 9, no. 1, p. 6044. https://doi.org/10.1038/s41598-019-42633-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Maensiri, S., Laokula, P., Klinkaewnaronga, J., Phokha, S., and Seraphin, S., Optoelectron. Adv. Mater. Rapid Commun., 2008, vol. 2, p. 161.

    CAS  Google Scholar 

  199. Najjar, M., Hosseini, H.A., Masoudi, A., Sabouri, Z., Mostafapour, A., Khatami, M., and Darroudi, M., Optik, 2021, vol. 242 p. 167152. https://doi.org/10.1016/j.ijleo.2021.167152

    Article  CAS  Google Scholar 

  200. Vazquez-Munoz, R., Arellano-Jimenez, M.J., and Lopez-Ribot, J.L., BMC Biomed. Eng., 2020, vol. 2, no. 1, p. 11. https://doi.org/10.1186/s42490-020-00044-2

    Article  PubMed  PubMed Central  Google Scholar 

  201. Gunti, L., Dass, R.S., and Kalagatur, N.K., Front. Microbiol., 2019, vol. 10, p. 931.

    Article  PubMed  PubMed Central  Google Scholar 

  202. Tahanpesar, E., Tavakkoli, H., and Hadikhani, S., Russ. J. Org. Chem. 2019, vol.55, no. 8, p. 1217. https://doi.org/10.1134/S1070428019080220

  203. Thi, T.U.D., Thoai Nguyen, T., Dang Thi, Y., Thi, K.H.T., Thang Phan, B., and Ngoc Pham, K., RSC Adv., 2020, vol. 10, no. 40, p. 23899. https://doi.org/10.1039/D0RA04926C

    Article  PubMed  PubMed Central  Google Scholar 

  204. Song, M., Liu, N., He, L., Liu, G., Ling, D., Su, X., and Sun, X., Nano Res., 2018, vol. 11, no. 5, p. 2796. https://doi.org/10.1007/s12274-017-1910-y

    Article  CAS  Google Scholar 

  205. Dymnikova, N.S., Erokhina, E.V., Moryganov, A.P., and Kuznetsov, O.Yu., Russ. J. Gen. Chem., 2020, vol. 90, no. 9, p. 1802. https://doi.org/10.1134/S1070363220090340

    Article  CAS  Google Scholar 

  206. Nakkala, J.R., Mata, R., Raja, K., Khub Chandra, V., and Sadras, S.R., Mater. Sci. Eng. (C), 2018, vol. 91, p. 372. https://doi.org/10.1016/j.msec.2018.05.048

    Article  CAS  Google Scholar 

  207. Ranjan Sarker, S., Polash, S.A., Boath, J., Kandjani, A.E., Poddar, A., Dekiwadia, C., Shukla, R., Sabri, Y., and Bhargava, S.K., ACS Appl. Mater. Interfaces, 2019, vol. 11, no. 14, p. 13450. https://doi.org/10.1021/acsami.9b02279

    Article  CAS  PubMed  Google Scholar 

  208. Barai, A.C., Paul, K., Dey, A., Manna, S., Roy, S., Bag, B.G., and Mukhopadhyay, C., Nano Converg., 2018, vol. 5, no. 1, p. 10. https://doi.org/10.1186/s40580-018-0142-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Hariharan, A., Begum, T., Ilyas, M., Jahangir, H., Kumpati, P., Mathew, S., Govindaraju, A., and Qadri, I., Pharmacogn. J., 2016, vol. 8, no. 5, p. 507. https://doi.org/10.5530/pj.2016.5.17

    Article  CAS  Google Scholar 

  210. Shruthi, C.D. and Suresh, G.S., Russ. J. Electrochem., 2021, vol. 57, no. 4, p. 380. https://doi.org/10.1134/S102319352104008X

    Article  Google Scholar 

  211. Shivashankarappa, A. and Sanjay, K.R., Braz. J. Microbiol., 2020, vol. 51, no. 3, p. 939. https://doi.org/10.1007/s42770-020-00238-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Muthuvel, A., Jothibas, M., Mohana, V., and Manoharan, C., Inorg. Chem. Commun., 2020, vol. 119, p. 108086. https://doi.org/10.1016/j.inoche.2020.108086

    Article  CAS  Google Scholar 

  213. Ding, L., Leduc, J., Fischer, T., Mathur, S., and Li, Y., Nanoscale Adv., 2020, vol. 2, no. 6, p. 2478. https://doi.org/10.1039/D0NA00224K

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Wang, L., Zhao, R., Wang, X., Mei, L., Yuan, L., Wang, S., Chai, Z., and Shi, W., CrystEngComm., 2014, vol. 16, no. 45, p. 10469. https://doi.org/10.1039/C4CE01731E

    Article  CAS  Google Scholar 

  215. Malka, E., Perelshtein, I., Lipovsky, A., Shalom, Y., Naparstek, L., Perkas, N., Patick, T., Lubart, R., Nitzan, Y., Banin, E., and Gedanken, A., Small, 2013, vol. 9, no. 23, p. 4069. https://doi.org/10.1002/smll.201301081

    Article  CAS  PubMed  Google Scholar 

  216. Cheloni, G., Marti, E., and Slaveykova, V.I., Toxicol., 2016, vol. 170, p. 120. https://doi.org/10.1016/j.aquatox.2015.11.018

    Article  CAS  Google Scholar 

  217. Wu, B., Zhuang, W.Q., Sahu, M., Biswas, P., and Tang, Y.J., Sci. Total Environ., 2011, vol. 409, no. 21, p. 4635. https://doi.org/10.1016/j.scitotenv.2011.07.037

    Article  CAS  PubMed  Google Scholar 

  218. Padmavathy, N. and Vijayaraghavan, R., J. Biomed. Nanotechnol., 2011, vol. 7, no. 6, p. 813. https://doi.org/10.1166/jbn.2011.1343

    Article  CAS  PubMed  Google Scholar 

  219. Borgognoni, C., Kim, J., Zucolotto, V., Harald, F., and Riehemann, K., Artif. Cells Nanomed. Biotechnol., 2018, vol. 46. p. 1. https://doi.org/10.1080/21691401.2018.1468767

  220. Leung, Y.H., Ng, A.M.C., Xu, X., Shen, Z., Gethings, L.A., Wong, M.T., Chan, C.M.N., Guo, M.Y., Ng, Y.H., Djurišić, A.B., Lee, P.K.H., Chan, W.K., Yu, L.H., Phillips, D.L., Ma, A.P.Y., and Leung, F.C.C., Small, 2014, vol. 10, no. 6, p. 1171. https://doi.org/10.1002/smll.201302434

    Article  CAS  PubMed  Google Scholar 

  221. Yu, J., Zhang, W., Li, Y., Wang, G., Yang, L., Jin, J., Chen, Q., and Huang, M., Biomed. Mater., 2014, vol. 10, no. 1, p. 015001. https://doi.org/10.1088/1748-6041/10/1/015001

    Article  CAS  Google Scholar 

  222. Castellano, J.J., Shafii, S.M., Ko, F., Donate, G., Wright, T.E., Mannari, R.J., Payne, W.G., Smith, D.J., and Robson, M.C., Int. Wound J., 2007, vol. 4, no. 2, p. 114. https://doi.org/10.1111/j.1742-481X.2007.00316.x

    Article  PubMed  PubMed Central  Google Scholar 

  223. Polívková, M., Valová, M., Siegel, J., Rimpelová, S., Hubáček, T., Lyutakov, O., and Švorčík, V., RSC Adv., 2015, vol. 5, no. 90, p. 73767. https://doi.org/10.1039/C5RA09297C

    Article  CAS  Google Scholar 

  224. Polívková, M., Štrublová, V., Hubáček, T., Rimpelová, S., Švorčík, V., and Siegel, J., Mater. Sci. Eng. (C), 2017, vol. 72 p. 512. https://doi.org/10.1016/j.msec.2016.11.072

    Article  CAS  Google Scholar 

  225. Zhang, H., Lv, X., Li, Y., Wang, Y., and Li, J., ACS Nano, 2010, vol. 4, no. 1, p. 380. https://doi.org/10.1021/nn901221k

    Article  CAS  PubMed  Google Scholar 

  226. Aydin Sevinç, B., and Hanley, L., J. Biomed. Mater. Res. (B), 2010, vol. 94, no. 1, p. 22. https://doi.org/10.1002/jbm.b.31620

    Article  CAS  Google Scholar 

  227. Connor, E.E., Mwamuka, J., Gole, A., Murphy, C.J., and Wyatt, M.D., Small, 2005, vol. 1, no. 3, p. 325. https://doi.org/10.1002/smll.200400093

    Article  CAS  PubMed  Google Scholar 

  228. Tang, J., Xiong, L., Wang, S., Wang, J., Liu, L., Li, J., Yuan, F., and Xi, T., J. Nanosci. Nanotechnol., 2009, vol. 9, no. 8, p. 4924. https://doi.org/10.1166/jnn.2009.1269

    Article  CAS  PubMed  Google Scholar 

  229. Huang, Z., Zheng, X., Yan, D., Yin, G., Liao, X., Kang, Y., Yao, Y., Huang, D., and Hao, B., Langmuir, 2008, vol. 24, no. 8, p. 4140. https://doi.org/10.1021/la7035949

    Article  CAS  PubMed  Google Scholar 

  230. Trouiller, B., Reliene, R., Westbrook, A., Solaimani, P., and Schiestl, R.H., Cancer Res., 2009, vol. 69, no. 22, p. 8784. https://doi.org/10.1158/0008-5472.CAN-09-2496

    Article  CAS  PubMed  Google Scholar 

  231. Garnett, M.C. and Kallinteri, P., Occup. Med., 2006, vol. 56, no. 5, p. 307. https://doi.org/10.1093/occmed/kql052

    Article  CAS  Google Scholar 

  232. Kim, M., Park, J.H., Jeong, H., Hong, J., Choi, W.S., Lee, B.H., and Park, C.Y., Sci. Rep., 2017, vol. 7, no. 1, p. 8238. https://doi.org/10.1038/s41598-017-08843-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Balva, M., Legeai, S., Garoux, L., Leclerc, N., and Meux, E., Environ. Technol., 2016, vol. 38, p. 1. https://doi.org/10.1080/09593330.2016.1211748

    Article  CAS  Google Scholar 

  234. Bhatt, R., Kumar, R., Bhattacharya, S., Bhatt, P., Patro, P., Dasgupta, T., Singh, A., and Muthe, K.P., J. Sci. Adv. Mater. Devices, 2022, vol. 7, no. 3, p. 100447. https://doi.org/10.1016/j.jsamd.2022.100447

    Article  CAS  Google Scholar 

  235. Singh, S., Kumar, V., Datta, S., Singh, S., Dhanjal, D.S., Garg, R., and Singh, J., Model Organisms to Study Biological Activities and Toxicity of NPs, Singapore: Springer, 2020, p. 451.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Joshi.

Ethics declarations

No conflict of interest was declared by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Satya, Hashmi, K., Gupta, S. et al. Nanofabrication of Metals and Their Compounds for Effective Medicinal and Environmental Applications (A Review). Russ J Gen Chem 93, 635–665 (2023). https://doi.org/10.1134/S1070363223030209

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363223030209

Keywords:

Navigation