Skip to main content
Log in

Metalloporphyrin-Based Biomimetic Catalysis: Applications, Modifications and Flexible Microenvironment Influences (A Review)

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

The application of metalloporphyrin in the field of catalysis is one of the hotspots currently by the domestic and foreign scholars. The chemists have been able to successfully mimic several types of oxidation reactions using metalloporphyrin as catalyst. At first, homogeneous system presents the most amenable strategy for oxidizing a vast array of substrates, for example, catalytic oxidation of small molecules, ring-opening polymerization of cyclic compounds and photo-induced electron transfer reversible addition-fragmentation chain transfer polymerization, etc. However, as homogeneous catalyst, metalloporphyrin has some limitations such as poor stability, easy deactivation, difficult separation, high cost and environmental concerns, which have directed research in this field to the design, synthesis, and applications of heterogeneous catalyst. Transforming metalloporphyrin into heterogeneous catalyst with stable chemical properties, excellent catalytic performances and special constructions have been the focus of research and practical application in the field of catalysis. Herein, in this review, we summarize the most important advances made by the scientific community in various catalytic applications and heterogeneous techniques of metalloporphyrin in the past ten years. We emphasize the applications of such catalysts on the oxidation reactions of many relevant substrates using homogeneous and heterogeneous metalloporphyrin-based catalyst, and we discuss the activity and stability of heterogeneous metalloporphyrin, as well as procedures. Moreover, the influences of flexible microenvironment formed by heterogeneous metalloporphyrin-based catalyst on the photo-catalytic behavior are discussed in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

REFERENCES

  1. Swart, M., and Snijders, J.G., Theor. Chem. Acc., 2003, vol. 110, p. 34. https://doi.org/10.1007/s00214-003-0443-5

    Article  CAS  Google Scholar 

  2. Singh, R., and Mukherjee, A., ACS Catal., 2019, vol. 9, p. 3604. https://doi.org/10.1021/acscatal.9b00009

    Article  CAS  Google Scholar 

  3. Długosz, O., and Banach, M., J. Mol. Struct., 2022, vol. 1260, p. 132841. https://doi.org/10.1016/j.molstruc.2022.132841

    Article  CAS  Google Scholar 

  4. Taniguchi, M., and Lindsey, J.S., Chem. Rev., 2017, vol. 117, p. 344. https://doi.org/10.1021/acs.chemrev.5b00696

    Article  CAS  PubMed  Google Scholar 

  5. Antina, E.V., Lebedeva, N.Sh., and V’ugin, A.I., Russ. J. Coord. Chem., 2001, vol. 27, p. 741. https://doi.org/10.1023/A:1012366612469

    Article  CAS  Google Scholar 

  6. Arnaud, C., Chem. Eng. News, 2018, vol. 96, p. 10. https://doi.org/10.1021/cen-09608-scicon6

    Article  Google Scholar 

  7. Agarry, I.E., Wang, Z.R., Cai, T., Wu, Z.L., Kan, J.Q., and Chen, K.W., Food Res. Int., 2022, vol. 160, p. 111650. https://doi.org/10.1016/j.foodres.2022.111650

    Article  CAS  Google Scholar 

  8. Hiroto, S., Miyake, Y., and Shinokubo, H., Chem. Rev., 2017, vol. 117, p. 2910. https://doi.org/10.1021/acs.chemrev.6b00427

    Article  CAS  PubMed  Google Scholar 

  9. Kaeffer, N., J. Am. Chem. Soc., 2022, vol. 2, p. 1266. https://doi.org/10.1021/jacsau.2c00031

    Article  CAS  Google Scholar 

  10. Chen, E.X., Yang, J., Qiu, M., Wang, X., Zhang, Y.F., Guo, Y.J., Huang, S.L., Sun, Y.Y., Zhang, J., and Hou, Y., ACS Appl. Mater. Inter., 2020, vol. 12, p. 52588. https://doi.org/10.1021/acsami.0c14135

    Article  CAS  Google Scholar 

  11. McKenna, A.M., Chacón-Patiño, M.L., Salvato, V.G., Bouyssiere, B., Giusti, P., Afonso, C., Shi, Q., and Combariza, M.Y., Energ. Fuel, 2021, vol. 35, p. 18056. https://doi.org/10.1021/acs.energyfuels.1c02002

    Article  CAS  Google Scholar 

  12. Rananaware, A., Bhosale, R.S., Ohkubo, K., Patil, H., Jones, L.A., Jackson, S.L., Fukuzumi, S., and Bhosale, S.V., J. Org. Chem., 2015, vol. 80, p. 3832. https://doi.org/10.1021/jo502760e

    Article  CAS  PubMed  Google Scholar 

  13. Sun, E.J., Wang, Y., Li, Y.S., Bai, X.Y., Sun, G.J., Wang, S.S., and Chang, Y., Russ. J. Inorg. Chem., 2021, vol. 66, p. 1973-1979. https://doi.org/10.1134/S0036023621130076

    Article  CAS  Google Scholar 

  14. Teng, Y., Li, M., Huang, X., and Ren, J., ACS Appl. Bio. Mater., 2020, vol. 3, p. 5020. https://doi.org/10.1021/acsabm.0c00522

    Article  CAS  PubMed  Google Scholar 

  15. Dumanoğulları, F.M., Tutel, Y., Küçüköz, B., Sevinç, G., Karatay, A., Yılmaz, H., Hayvali, M., and Elmali, A., J. Photoch. Photobio. A, 2019, vol. 373, p. 116. https://doi.org/10.1016/j.jphotochem.2019.01.007

    Article  CAS  Google Scholar 

  16. Chen, Y., Luo, R., Ren, Q., Zhou, X., and Ji, H., Ind. Eng. Chem. Res., 2020, vol. 59, p. 20269. https://doi.org/10.1021/acs.iecr.0c03766

    Article  CAS  Google Scholar 

  17. Cheng, N., Zhang, L.Y., Durkan, C., Wang, N., Du, B., Zhao, J., and He, Y., J. Phys. Chem. C., 2020, vol. 124, p. 21137. https://doi.org/10.1021/acs.jpcc.0c06044

    Article  CAS  Google Scholar 

  18. Saraf, M., Yaraki, M.T., Prateek, Tan, Y.N., and Gupta, R.K., ACS Appl. Nano Mater., 2021, vol. 4, p. 911. https://doi.org/10.1021/acsanm.0c02945

    Article  CAS  Google Scholar 

  19. Li, X., Nomura, K., Guedes, A., Goto, T., Sekino, T., Fujitsuka, M., and Osakada, Y., ACS Omega, 2022, vol. 7, p. 7172. https://doi.org/10.1021/acsomega.1c06838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tyulyaeva, E.Yu., Russ. J. Inorg. Chem., 2019, vol. 64, p. 1775. https://doi.org/10.1134/S0036023619140110

    Article  CAS  Google Scholar 

  21. Cheema, H., Baumann, A., Loya, E.K., Brogdon, P., McNamara, L.E., Carpenter, C.A., Hammer, N.I., Mathew, S., Risko, C., and Delcamp, J.H., ACS Appl. Mater. Inter., 2019, vol. 11, p. 16474. https://doi.org/10.1021/acsami.8b21414

    Article  CAS  Google Scholar 

  22. Thangamuthu, M., Ruan, Q.S., Ohemeng, P.O., Luo, B., Jing, D.W., Godin, R., and Tang, J.W., Chem. Rev., 2022, vol. 122, p. 11778. https://doi.org/10.1021/acs.chemrev.1c00971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Reboucas, J.S., and James, B.R., Inorg. Chem., 2013, vol. 52, p. 1084. https://doi.org/10.1021/ic302401m

    Article  CAS  PubMed  Google Scholar 

  24. Yashima, E., Ousaka, N., Taura, D., Shimomura, K., Ikai, T., and Maeda, K., Chem. Rev., 2016, vol. 116, p. 13752. https://doi.org/10.1021/acs.chemrev.6b00354

    Article  CAS  PubMed  Google Scholar 

  25. Jayakumar, S., Li, H., Chen, J., and Yang, Q.H., ACS Appl. Mater. Inter., 2018, vol. 10, p. 2546. https://doi.org/10.1021/acsami.7b16045

    Article  CAS  Google Scholar 

  26. Ling, P.H., Cheng, S., Chen, N., Qian, C.H., and Gao, F., ACS Appl. Mater. Inter., 2020, vol. 12, p. 17185. https://doi.org/10.1021/acsami.9b23147

    Article  CAS  Google Scholar 

  27. Bharati, S.L., Sarma, C., Hazarika, P.J., Chaurasia, P.K., Anand, N., and Yadava, S., Russ. J. Inorg. Chem., 2019, vol. 64, p. 335. https://doi.org/10.1134/S0036023619030045

    Article  CAS  Google Scholar 

  28. Paludetto, M.N., Bijani, C., Puisset, F., BernardesGénisson, V., Arellano, C., and Robert, A., J. Med. Chem., 2018, vol. 61, p. 7849. https://doi.org/10.1021/acs.jmedchem.8b00812

    Article  CAS  PubMed  Google Scholar 

  29. Huang, X.Y. and Groves, J.T., Chem. Rev., 2018, vol. 118, p. 2491. https://doi.org/10.1021/acs.chemrev.7b00373

    Article  CAS  PubMed  Google Scholar 

  30. Fürst, M.J., Fiorentini, F., and Fraaije, M.W., Curr. Opin. Struct. Biol., 2019, vol. 59, p. 29. https://doi.org/10.1016/j.sbi.2019.01.019

    Article  CAS  PubMed  Google Scholar 

  31. Podgorski, M.N., Coleman, T., Chao, R.R., De Voss, J.J., Bruning, J.B., and Bell, S.G., J. Inorg. Biochem., 2020, vol. 203, p. 110913. https://doi.org/10.1016/j.jinorgbio.2019.110913

    Article  CAS  PubMed  Google Scholar 

  32. Bin, Z., Feng, L., and Yan, Y., Food Chem., 2022, vol. 388, p. 132898. https://doi.org/10.1016/j.foodchem.2022.132898

    Article  CAS  PubMed  Google Scholar 

  33. Yang, Y.N., Li, G.J., Mao, X.B., and She, Y.B., Org. Process Res. Dev., 2019, vol. 23, p. 1078. https://doi.org/10.1021/acs.oprd.9b00030

    Article  CAS  Google Scholar 

  34. Zhou, L.F., Huang, B.B., Huang, D.W., Niu, C.G., Zeng, G.M., Ruan, M., and Zhang, X.G., Chem. Eng. J., 2015, vol. 280, p. 248. https://doi.org/10.1016/j.cej.2015.06.023

    Article  CAS  Google Scholar 

  35. Wang, C.C., Maji, S., Chen, P.Y., Lee, H.K., Yu, S.F., and Chan, S.I., Chem. Rev., 2017, vol. 117, p. 8574. https://doi.org/10.1021/acs.chemrev.6b00624

    Article  CAS  PubMed  Google Scholar 

  36. Simonova, O.R., Zdanovich, S.A., Zaitseva, S.V., and Koifman, O.I., Russ. J. Inorg. Chem., 2020, vol. 65, p. 1006. https://doi.org/10.1134/S0036023620070207

    Article  CAS  Google Scholar 

  37. Pereira, M.M., Dias, L.D., and Calvete, M.J., ACS Catal., 2018, vol. 8, p. 10784. https://doi.org/10.1021/acscatal.8b01871

    Article  CAS  Google Scholar 

  38. Anand, N., Yadava, S., Chaurasia, P.K., and Bharati, S.L., Russ. J. Inorg. Chem., 2019, vol. 64, p. 1101. https://doi.org/10.1134/S003602361909002X

    Article  Google Scholar 

  39. Lyons, J.E., Ellis, P., and Myers, H., J. Catal., 1995, vol. 155, p. 59. https://doi.org/10.1006/jcat.1995.1188

    Article  CAS  Google Scholar 

  40. Połtowicz, J. and Haber, J., J. Mol. Catal. A: Chem., 2004, vol. 220, p. 43. https://doi.org/10.1016/j.molcata.2004.03.050

    Article  CAS  Google Scholar 

  41. Esfahani, M.H., Behzad, M., Dusek, M. and Kucerakova, M., Inorg. Chim. Acta, 2020, vol. 508, p. 119637. https://doi.org/10.1016/j.ica.2020.119637

    Article  CAS  Google Scholar 

  42. Traylor, T.G., Tsuchiya, S., Byun, Y.S., and Kim, C., J. Am. Chem. Soc., 1993, vol. 115, p. 2775. https://doi.org/10.1021/ja00060a027

    Article  CAS  Google Scholar 

  43. Rebelo, S.L., Simões, M.M., Neves, M.G.P., and Cavaleiro, J.A., J. Mol. Catal. A: Chem., 2003, vol. 201, p. 9. https://doi.org/10.1016/S1381-1169(03)00149-3

    Article  CAS  Google Scholar 

  44. Baciocchi, E., Gerini, M.F., and Lapi, A., J. Org. Chem., 2004, vol. 69, p. 3586. https://doi.org/10.1021/jo049879h

    Article  CAS  PubMed  Google Scholar 

  45. Zoppe, J.O., Ataman, N.C., Mocny, P., Wang, J., Moraes, J., and Klok, H.A., Chem. Rev., 2017, vol. 117, p. 1105. https://doi.org/10.1021/acs.chemrev.6b00314

    Article  CAS  PubMed  Google Scholar 

  46. Asano, S., Aida, T., and Inoue, S., J. Chem. Soc. Chem. Commun., 1985, vol. 17, p. 1148. https://doi.org/10.1039/C39850001148

    Article  Google Scholar 

  47. Aida, T., and Inoue, S., Macromolecules, 1981, vol. 14, p. 1162. https://doi.org/10.1021/ma50006a004

    Article  CAS  Google Scholar 

  48. Yasuda, T., Aida, T., and Inoue, S., Macromolecules, 1983, vol. 16, 1792. https://doi.org/10.1021/ma00245a020

  49. Polymers in Medicine and Surgery, Kronenthal, R.L., Oser, Z., and Martin, E., Eds., Plenum Press, 1975, vol. 8, p. 29. https://doi.org/10.1007/978-1-4684-7744-3

  50. Zhuo, C.W., Cao, H., You, H., Liu, S.J., Wang, X.H., and Wang, F.S., ACS Macro Lett., 2022, vol. 11, p. 941. https://doi.org/10.1021/acsmacrolett.2c00365

    Article  CAS  PubMed  Google Scholar 

  51. Doerr, A.M., Burroughs, J.M., Gitter, S.R., Yang, X., and Long, B.K., ACS Catal., 2020, vol. 10, p. 14457. https://doi.org/10.1021/acscatal.0c03802

    Article  CAS  Google Scholar 

  52. Rybel, N.D., Steenberge, P.H.M.V., Reyniers, M.F., D’Hooge, D.R., and Marin, G.B., Macromolecules, 2019, vol. 52, p. 4555. https://doi.org/10.1021/acs.macromol.9b00762

    Article  CAS  Google Scholar 

  53. Archer, N.E., Boeck, P.T., Ajirniar, Y., Tanaka, J., and You, W., ACS Macro Lett., 2022, vol. 11, p. 1079. https://doi.org/10.1021/acsmacrolett.2c00476

    Article  CAS  PubMed  Google Scholar 

  54. Matyjaszewski, K., Gao, H., Sumerlin, B.S., and Tsarevsky, N.V., ACS Sym. Ser., 2018, vol. 1284, p. 273. https://doi.org/10.1021/bk-2018-1284.ch012

    Article  Google Scholar 

  55. Spiridon, M.C., Demazy, N., Brochon, C., Cloutet, E., Hadziioannou, G., Aissou, K., and Fleury, G., Macromolecules, 2020, vol. 53, p. 68. https://doi.org/10.1021/acs.macromol.9b01551

    Article  CAS  Google Scholar 

  56. Spiridon, M.C., Demazy, N., Brochon, C., Cloutet, E., and Fleury, G., J. Am. Chem. Soc., 2020, vol. 136, p. 5508. https://doi.org/10.1021/ja501745g

    Article  CAS  Google Scholar 

  57. Xu, J.T., Shanmugam, S., and Boyer, C., ACS Macro Lett., 2015, vol. 4, p. 926. https://doi.org/10.1021/acsmacrolett.5b00460

    Article  CAS  PubMed  Google Scholar 

  58. Phommalysack-Lovan, J., Chu, Y., Boyer, C., and Xu, J.T., Chem. Commun., 2018, vol. 54, p. 6591. https://doi.org/10.1039/C8CC02783H

    Article  CAS  Google Scholar 

  59. Tsivadze, A.Yu. and Chernyad’ev, A.Yu., Russ. J. Inorg. Chem., 2020, vol. 65, p. 1662. https://doi.org/10.1134/S0036023620110194

    Article  Google Scholar 

  60. Shanmugam, S., Xu, J.T., and Boyer, C., Chem. Sci., 2015, vol. 6, p. 1341. https://doi.org/10.1039/C4SC03342F

    Article  CAS  PubMed  Google Scholar 

  61. Shanmugam, S., Xu, J.T., and Boyer, C., J. Am. Chem. Soc., 2015, vol. 137, p. 9174. https://doi.org/10.1021/jacs.5b05274

    Article  CAS  PubMed  Google Scholar 

  62. Bagheri, A., Yeow, J., Arandiyan, H., Xu, J.T., Boyer, C., and Lim, M., Macromol. Rapid Commun., 2016, vol. 37, p. 905. https://doi.org/10.1002/marc.201600127

    Article  CAS  PubMed  Google Scholar 

  63. Shen, L.L., Lu, Q.Z., Zhu, A.Q., Lv, X.Q., and An, Z.S., ACS Macro Lett., 2017, vol. 6, p. 625. https://doi.org/10.1021/acsmacrolett.7b00343

    Article  CAS  PubMed  Google Scholar 

  64. Shanmugam, S., Xu, J.T., and Boyer, C., Angew Chem. Int. Ed., 2016, vol. 128, p. 1048. https://doi.org/10.1002/ange.201510037

    Article  Google Scholar 

  65. Xu, J.T., Shanmugam, S., Fu, C., Aguey-Zinsou, K.F., and Boyer, C., J. Am. Chem. Soc., 2016, vol. 138, p. 3094. https://doi.org/10.1021/jacs.5b12408

    Article  CAS  PubMed  Google Scholar 

  66. Rizwan, M., Yuan, Y., Gorbet, M.B., Tse, J.W., and Yim, E.K.F., ACS Appl. Bio. Mater., 2020, vol. 3, p. 693. https://doi.org/10.1021/acsabm.9b01026

    Article  CAS  PubMed  Google Scholar 

  67. Alag, P., Zapsas, G., Hadjichristidis, N., Hong, S.C., and Feng, X., Macromolecules, 2021, vol. 54, p. 6144. https://doi.org/10.1021/acs.macromol.1c00659

    Article  CAS  Google Scholar 

  68. Ivanova, Yu.B., Semeikin, A.S., Lyubimova, T.V., and Mamardashvili, N.Zh., Russ. J. Org. Chem., 2020, vol. 56, p. 1691. https://doi.org/10.1134/S1070428020100036

    Article  Google Scholar 

  69. Ji, J.M., Kim, S.H., Zhou, H., Kim, C.H., and Kim, H.K., ACS Appl. Mater. Inter., 2019, vol. 11, p. 24067. https://doi.org/10.1021/acsami.9b05510

    Article  CAS  Google Scholar 

  70. Sun, C.G., Hu, B.C., and Liu, Z.L., Heteroat. Chem., 2012, vol. 23, p. 295. https://doi.org/10.1002/hc.21017

    Article  CAS  Google Scholar 

  71. Haber, J., Matachowski, L., Pamin, K., and Połtowicz, J., J. Mol. Catal. A: Chem., 2000, vol. 162, p. 105. https://doi.org/10.1016/S1381-1169(00)00324-1

    Article  CAS  Google Scholar 

  72. Singh, R., and Mukherjee, A., ACS Catal., 2019, vol. 9, p. 3604. https://doi.org/10.1021/acscatal.9b00009

    Article  CAS  Google Scholar 

  73. She, Y.B., Wang, W.J., and Li, G.J., Chin. J. Chem. Eng., 2012, vol. 20, p. 262. https://doi.org/10.1016/S1004-9541(12)60387-5

    Article  CAS  Google Scholar 

  74. Shpilman, J.S., Friedman, A., Zion, N., Levy, N., Major, D.T., and Elbaz, L., J. Phys. Chem. C., 2019, vol. 123, p. 30129. https://doi.org/10.1021/acs.jpcc.9b09203

    Article  CAS  Google Scholar 

  75. Huang, G., Guo, Y.A., Zhou, H., Zhao, S.K., Liu, S.Y., Wang, A.P., and Wei, J.F., J. Mol. Catal. A: Chem., 2007, vol. 273, p. 144. https://doi.org/10.1016/j.molcata.2007.04.009

    Article  CAS  Google Scholar 

  76. Wang, C., Shalyaev, K.V., Bonchio, M., Carofiglio, T., and Groves, J.T., Inorg. Chem., 2006, vol. 45, p. 4769. https://doi.org/10.1021/ic0520566

    Article  CAS  PubMed  Google Scholar 

  77. Xie, Y.J., Zhang, F.Y., Liu, P.L., Hao, F., and Luo, H.A., J. Mol. Catal. A: Chem., 2014, vol. 386, p. 95. https://doi.org/10.1016/j.molcata.2014.02.002

    Article  CAS  Google Scholar 

  78. Huang, Y., Li, X., Li, J.L., Zhang, B., and Cai, T., Macromolecules, 2018, vol. 51, p. 7974. https://doi.org/10.1021/acs.macromol.8b01735

    Article  CAS  Google Scholar 

  79. Cai, Z., Huang, M., Dai, J., Zhan, G., Sun, F.L., Zhuang, G.L., Wang, Y., Tian, P., Chen, B., and Ullah, S., ACS Catal., 2022, vol. 12, p. 709. https://doi.org/10.1021/acscatal.1c03630

    Article  CAS  Google Scholar 

  80. Wei, Y., Zhang, M., Wu, P., Luo, J., and Li, H.M., ACS Sustainable Chem. Eng., 2020, vol. 8, p. 1015. https://doi.org/10.1021/acssuschemeng.9b05728

    Article  CAS  Google Scholar 

  81. Li, Z., Xia, C.G., and Zhang, X.M., J. Mol. Catal. A: Chem., 2002, vol. 185, p. 47. https://doi.org/10.1016/S1381-1169(02)00120-6

    Article  CAS  Google Scholar 

  82. Huang, Y., Li, X., Li, J.L., Zhang, B., and Cai, T., Macromolecules, 2018, vol. 51, p. 7974. https://doi.org/10.1021/acs.macromol.8b01735

    Article  CAS  Google Scholar 

  83. Hao, W.J., Chen, D., Li, Y.S., Yang, Z.F., Xing, G.L., Li, J., and Chen, L., Chem. Mater., 2019, vol. 31, p. 8100. https://doi.org/10.1021/acs.chemmater.9b02718

    Article  CAS  Google Scholar 

  84. Long, Z.H., Luo, D., Wu, K., Chen, Z.Y., and Li, D., ACS Appl. Mater. Inter., 2021, vol. 13, p. 37102. https://doi.org/10.1021/acsami.1c08840

    Article  CAS  Google Scholar 

  85. Wang, Y.J., Song, D.M., Li, J., Shi, Q., Zhao, J.L., Hu, Y.P., Zeng, F.L., and Wang, N., Inorg. Chem., 2022, vol. 61, p. 10198. https://doi.org/10.1021/acs.inorgchem.2c01415

    Article  CAS  PubMed  Google Scholar 

  86. Westrup, K.C.M., Junior, R.M.D.S., Mantovani, K.M., Bach, L., Stival, J.F., Zamora, P.G.P., Wypych, F., Machdod, G.S., and Nakagaki, S., Appl. Catal. (A), 2020, vol. 602, p. 117708. https://doi.org/10.1016/j.apcata.2020.117708

    Article  CAS  Google Scholar 

  87. Birin, K.P., Abdulaeva, I.A., Polivanovskaya, D.A., Sinel’shchikova, A.A., Demina, L.I., Baranchikov, A.E., Gorbunova, Yu.G., and Tsivadze, A.Yu., Russ. J. Inorg. Chem., 2021, vol. 66, p. 193. https://doi.org/10.1134/S0036023621020029

    Article  CAS  Google Scholar 

  88. Mantovani, K.M., Stival, J.F., Wypych, F., Bach, L., Zamora, P.G.P., Rocco, M.L., and Nakagaki, S., J. Catal., 2017, vol. 352, p. 442. https://doi.org/10.1016/j.jcat.2017.06.015

    Article  CAS  Google Scholar 

  89. Mackintosh, H.J., Budd, P.M., and McKeown, N.B., J. Mater. Chem., 2008, vol. 18, p. 573. https://doi.org/10.1039/B715660J

    Article  CAS  Google Scholar 

  90. Chen, L., Yang, Y., and Jiang, D.L., J. Am. Chem. Soc., 2010, vol. 132, p. 9138. https://doi.org/10.1021/ja1028556

    Article  CAS  PubMed  Google Scholar 

  91. Xie, M.H., Yang, X.L., and Wu, C.D., Chem. Commun., 2011, vol. 47, p. 5521. https://doi.org/10.1039/C1CC10461F

    Article  CAS  Google Scholar 

  92. Shultz, A.M., Farha, O.K., Hupp, J.T., and Nguyen, S.T., Chem. Sci., 2011, vol. 2, p. 686. https://doi.org/10.1039/C0SC00339E

    Article  CAS  Google Scholar 

  93. Zhang, Z.Q., Li, J., Yao, Y.H., and Sun, S., Cryst. Growth Des., 2015, vol. 15, p. 5028. https://doi.org/10.1021/acs.cgd.5b00987

    Article  CAS  Google Scholar 

  94. Lin, G.Q., Ding, H.M., Chen, R.F., Peng, Z.K., Wang, B.S., and Wang, C., J. Am. Chem. Soc., 2017, vol. 139, p. 8705. https://doi.org/10.1021/jacs.7b04141

    Article  CAS  PubMed  Google Scholar 

  95. Chen, R., Shi, J.L., Ma, Y., Lin, G., Lang, X., and Wang, C., Angew. Chem. Int. Ed., 2019, vol. 58, p. 6430. https://doi.org/10.1002/anie.201902543

    Article  CAS  Google Scholar 

  96. Ranjeesh, K.C., George, L., Wakchaure, V.C., Devi, R.N., and Babu, S.S., Chem. Commun., 2019, vol. 55, p. 1627. https://doi.org/10.1039/C8CC09132C

    Article  CAS  Google Scholar 

  97. Piccirillo, G., Moreira-Santos, M., Válega, M., Eusébio, M.E.S., Silva, A.M.S., Ribeiro, R., Freitas, H., Pereira, M.M., and Calvete, M.J.F., Appl. Catal. (B), 2021, vol. 282, p. 119556. https://doi.org/10.1016/j.apcatb.2020.119556

    Article  CAS  Google Scholar 

  98. Pattanayak, D.S., Mishra, J., Nanda, J., Sahoo, P.K., Kumar, R., and Sahoo, N.K., J. Environ. Manag., 2021, vol. 297, p. 113312. https://doi.org/10.1016/j.jenvman.2021.113312

    Article  CAS  Google Scholar 

  99. Chang, H.C., Qin, J.L., Xiao, P.S., Yang, Y., Zhang, T.F., Ma, Y.F., Huang, Y., and Chen, Y.S., Adv. Mater., 2016, vol. 28, p. 3504. https://doi.org/10.1002/adma.201505420

    Article  CAS  PubMed  Google Scholar 

  100. Cui, H., Wang, Y., Wang, Y., Fan, Y.Z., Zhang, L., and Su, C.Y., CrystEngComm, 2016, vol. 18, p. 2203. https://doi.org/10.1039/C6CE00358C

    Article  CAS  Google Scholar 

  101. Huang, G., Liu, Y., Cai, J.L., Chen, X.F., Zhao, S.K., Guo, Y.A., Wei, S.J., and Li, X., Appl. Surf. Sci., 2017, vol. 402, p. 436. https://doi.org/10.1016/j.apsusc.2017.01.082

    Article  CAS  Google Scholar 

  102. Abdinejad, M., Wilm, L.F.B., Dielmann, F., and Kraatz, H.B., ACS Sustain. Chem. Eng., 2021, vol. 9, p. 521. https://doi.org/10.1021/acssuschemeng.0c07964

    Article  CAS  Google Scholar 

  103. Han, J., Zhu, Z.B., Li, N.J., Chen, D.Y., Xu, Q.F., Li, H., He, J.H., and Lu, J.M., Appl. Catal. B: Environ., 2021, vol. 291, p. 120108. https://doi.org/10.1016/j.apcatb.2021.120108

    Article  CAS  Google Scholar 

  104. Jayakumar, S., Li, H., Tao, L., Li, C.Z., Liu, L.N., Chen, J., and Yang, Q.H., ACS Sustain. Chem. Eng., 2018, vol. 6, p. 9237. https://doi.org/10.1021/acssuschemeng.8b01548

    Article  CAS  Google Scholar 

  105. Ren, Q.Z., Yao, Y., Ding, X.J., Hou, Z.S., and Yan, D.Y., Chem. Commun., 2009, vol. 31, p. 4732. https://doi.org/10.1039/B904199K

    Article  Google Scholar 

  106. Serwicka, E.M., Połtowicz, J., Bahranowski, K., Olejniczak, Z., and Jones, W., Appl. Catal. (A), 2004, vol. 275, p. 9. https://doi.org/10.1016/j.apcata.2004.07.005

    Article  CAS  Google Scholar 

  107. Luo, Q., Ge, R., Kang, S.Z., Qin, L., Li, G., and Li, X., Appl. Surf. Sci., 2018, vol. 427, p. 15. https://doi.org/10.1016/j.apsusc.2017.08.152

    Article  CAS  Google Scholar 

  108. Martinez-Lorente, M., Battioni, P., Kleemiss, W., Bartoli, J., and Mansuy, D., J. Mol. Catal. A: Chem., 1996, vol. 113, p. 343. https://doi.org/10.1016/S1381-1169(96)00109-4

    Article  CAS  Google Scholar 

  109. Guo, X., Li, Y.Y., Shen, D.H., Song, Y.Y., Wang, X., and Liu, Z.G., J. Mol. Catal. (A), 2013, vol. 367, p. 7. https://doi.org/10.1016/j.molcata.2012.11.005

    Article  CAS  Google Scholar 

  110. Liu, C.J., Yu, W.Y., Li, S.G., and Che, C.M., J. Org. Chem., 1998, vol. 63, p. 7364. https://doi.org/10.1021/jo981003l

    Article  CAS  PubMed  Google Scholar 

  111. Yang, F., Gao, S.Y., Xiong, C.R., Wang, H.Q., Chen, J., and Kong, Y., Chinese J. Catal., 2015, vol. 36, p. 1035. https://doi.org/10.1016/S1872-2067(15)60836-1

    Article  CAS  Google Scholar 

  112. Wang, R.M., Komatsu, T., Nakagawa, A., and Tsuchida, E., Bioconjugate Chem., 2005, vol. 16, p. 23. https://doi.org/10.1021/bc049859m

    Article  CAS  Google Scholar 

  113. Hirobe, M., Pure Appl. Chem., 1994, vol. 66, p. 729. https://doi.org/10.1351/pac199466040729

    Article  CAS  Google Scholar 

  114. Huang, G., Guo, C.C., and Tang, S.S., J. Mol. Catal. A: Chem., 2007, vol. 261, p. 125. https://doi.org/10.1016/j.molcata.2006.08.014

    Article  CAS  Google Scholar 

  115. Shimidzu, T., Segawa, H., Wu, F., and Nakayama, N., J. Photochem. Photobiol. (A), 1995, vol. 92, p. 121. https://doi.org/10.1016/1010-6030(95)04168-2

    Article  CAS  Google Scholar 

  116. Chen, H.B., Zeng, J., Deng, F.Y., Luo, X.J., Lei, Z.D., and Li, H.M., J. Polym. Res., 2012, vol. 19, p. 1. https://doi.org/10.1007/s10965-012-9880-y

    Article  CAS  Google Scholar 

  117. Marianov, A.N., and Jiang, Y.J., ACS Sustain. Chem. Eng., 2019, vol. 7, p. 3838. https://doi.org/10.1021/acssuschemeng.8b04735

    Article  CAS  Google Scholar 

  118. Abdinejad, M., Wilm, L.F.B., Dielmann, F., and Kraatz, H.B., ACS Sustain. Chem. Eng., 2021, vol. 9, p. 521. https://doi.org/10.1021/acssuschemeng.0c07964

    Article  CAS  Google Scholar 

  119. Lu, X.F., Ahsaine, H.A., Dereli, B., Garcia-Esparza, A.T., Reinhard, M., Shinagawa, T., Li, D.X., Adil, K., Tchalala, M.R., Kroll, T., Eddaoudi, M., Sokaras, D., Cavallo, L., and Takanabe, K., ACS Catal., 2021, vol. 11, p. 6499. https://doi.org/10.1021/acscatal.1c01157

    Article  CAS  Google Scholar 

  120. Abdinejad, M., Dao, C., Deng, B., Dinic, F., Voznyy, O., Zhang, X.A., and Kraatz, H.B., ACS Sustain. Chem. Eng., 2020, vol. 8, p. 9549. https://doi.org/10.1021/acssuschemeng.0c02791

    Article  CAS  Google Scholar 

  121. Gole, B., Stepanenko, V., Rager, S., Grüne, M., Medina, D.D., Bein, T., Würthner, F., and Beuerle, F., Angew. Chem. Int. Ed., 2018, vol. 57, p. 846. https://doi.org/10.1002/anie.201708526

    Article  CAS  Google Scholar 

  122. Yang, X.L., Zhang, X.W., Deng, J.X., Chu, Z.M., Jiang, Q., Meng, J.H., Wang, P.Y., Zhang, L.Q., Yin, Z.G., and You, J.B., Nat. Commun., 2018, vol. 9, p. 1. https://doi.org/10.1038/s41467-018-03702-1

    Article  CAS  Google Scholar 

  123. Han, X., Huang, J.J., Yuan, C., Liu, Y., and Cui, Y., J. Am. Chem. Soc., 2018, vol. 140, p. 892. https://doi.org/10.1021/jacs.7b12110

    Article  CAS  PubMed  Google Scholar 

  124. Ma, T., Kapustin, E.A., Yin, S.X., Liang, L., Zhou, Z., Niu, J., Li, L.H., Wang, Y., Su, J., and Li, J., Science, 2018, vol. 361, p. 48. https://doi.org/10.1126/science.aat7679

    Article  CAS  PubMed  Google Scholar 

  125. Zhao, F.Y., Li, W.J., Guo, A., Chang, L., Li, Y., and Ruan, W.J., RSC Adv., 2016, vol. 6, p. 26199. https://doi.org/10.1039/C6RA01599A

    Article  CAS  Google Scholar 

  126. Meng, Y., Luo, Y., Shi, J.L., Ding, H., Lang, X., Chen, W., Zheng, A., Sun, J., and Wang, C., Angew Chem. Int. Ed., 2020, vol. 132, p. 3653. https://doi.org/10.1002/ange.201913091

    Article  Google Scholar 

  127. La, D.D., Jadha, R.W., Gosavi, N.M., Rene, E.R., Nguyen, T.A., Xuan-Thanh, B., Nguyen, D.D., Chung, W.J., Chang, S.W., and Nguyen, X.H., J. Water Process Eng., 2021, vol. 40, p. 101876. https://doi.org/10.1016/j.jwpe.2020.101876

    Article  Google Scholar 

  128. Zhao, Z.L., Bian, J., Zhao, L.N., Wu, H.J., Xu, S., Sun, L., Li, Z.J., Zhang, Z.Q., and Jing, L.Q., Chinese J. Catal., 2022, vol. 43, p. 1331. https://doi.org/10.1016/S1872-2067(21)64005-6

    Article  CAS  Google Scholar 

  129. Li, F.F., Yu, Y., Lv, H.Y., Cai, G.T., and Zhang, Y.W., Polym. Chem., 2021, vol. 12, p. 2258. https://doi.org/10.1039/D0PY01643H

    Article  CAS  Google Scholar 

  130. Li, F.F., Yu, Y., Lv, H.Y., Wan, Y.M., Gao, X.Q., Li, Y.X., and Zhang, Y.W., Eur. Polym. J., 2022, vol. 178, p. 111519. https://doi.org/10.1016/j.eurpolymj.2022.111519

    Article  CAS  Google Scholar 

  131. Shen, H.M., Wang, X., Ning, L., Guo, A.B., Deng, J.H., and She, Y.B., Appl. Catal. (A), 2021, vol. 609, p. 117904. https://doi.org/10.1016/j.apcata.2020.117904

    Article  CAS  Google Scholar 

  132. Zhang, X.F., Zhang, H.F., Qiu, B., Zhu, D.D., Zhang, S., Bian, Y.P., Wang, J.H., Li, D.J., Wang, S.M., Mai, W.P., Chen, J., and Li, T., Fuel, 2023, vol. 331, p. 125828. https://doi.org/10.1016/j.fuel.2022.125828

    Article  CAS  Google Scholar 

  133. Rayati, S., Zamanifard, A., Nejabat, F., and Hoseini, S., Mol. Catal., 2021, vol. 516, p. 111950. https://doi.org/10.1016/j.mcat.2021.111950

    Article  CAS  Google Scholar 

  134. Qu, R., Shen, L.L., Chai, Z.H., Jing, C., Zhang, Y.F., An, Y.L., and Shi, L.Q., ACS Appl. Mater. Inter., 2014, vol. 6, p. 19207. https://doi.org/10.1021/am505232h

    Article  CAS  Google Scholar 

  135. Li, F.F., Wang, X., Zhao, H.H., and Zhang, Y.W., React. Funct. Polym., 2020, vol. 149, p. 104530. https://doi.org/10.1016/j.reactfunctpolym.2020.104530

    Article  CAS  Google Scholar 

  136. Nodzewska, A., Wadolowska, A., and Watkinson, M., Coordin. Chem. Rev., 2019, vol. 382, p. 181. https://doi.org/10.1016/j.ccr.2018.12.004

    Article  CAS  Google Scholar 

  137. Fushimi, Y., Koinuma, M., Yasuda, Y., Nomura, K., and Asano, M.S., Macromolecules, 2017, vol. 50, p. 1803. https://doi.org/10.1021/acs.macromol.7b00047

    Article  CAS  Google Scholar 

  138. Tian, J. and Zhang, W.A., Prog. Polym. Sci., 2019, vol. 95, p. 65. https://doi.org/10.1016/j.progpolymsci.2019.05.002

    Article  CAS  Google Scholar 

  139. Qiu, N.N., Li, Y.N., Han, S.L., Satoh, T., Kakuchi, T., and Duan, Q., J. Appl. Polym. Sci., 2014, vol. 131, p. 4401. https://doi.org/10.1002/app.40523

    Article  CAS  Google Scholar 

  140. Todorova, Z., Tumurbaatar, O., Todorova, J., Ugrinova, I., and Koseva, N., Eur. Polym. J., 2021, vol. 142, p. 110151. https://doi.org/10.1016/j.eurpolymj.2020.110151

    Article  CAS  Google Scholar 

  141. Somszor, K., Allison-Logan, S., Karimi, F., Mckenzie, T., and Heath, D., Biomacromolecules, 2021, vol. 22, p. 2554. https://doi.org/10.1021/acs.biomac.1c00296

    Article  CAS  PubMed  Google Scholar 

  142. England, R.M., Hare, J., Gunnarsson, A., Parker, J.S., and Ashford, M.B., Biomacromolecules, 2020, vol. 21, p. 3332. https://doi.org/10.1021/acs.biomac.0c00768

    Article  CAS  PubMed  Google Scholar 

  143. Jin, Y.S., Ji, E.K., Kwon, Y.J., Kim, S.H., Cho, S., Dong, H.C., Cho, K.Y., and Baek, K.Y., Mater. Lett., 2022, vol. 311, p. 131577. https://doi.org/10.1016/j.matlet.2021.131577

    Article  CAS  Google Scholar 

  144. Patenaude, B.F., Berda, E.B., and Pazicni, S., Polym. Chem., 2022, vol. 13, p. 677. https://doi.org/10.1039/D1PY01005K

    Article  CAS  Google Scholar 

  145. Zhang, J.L., Zhang, Z.K., Yu, B., Wang, C., Wu, W., and Jiang, X.Q., ACS Appl. Mater. Inter., 2016, vol. 8, p. 5794. https://doi.org/10.1021/acsami.5b10876

    Article  CAS  Google Scholar 

  146. Huang, X.W., Wei, F.L., Guo, F.Q., and Zhu, Y.Y., Inorg. Chim. Acta, 2020, vol. 511, p. 119816. https://doi.org/10.1016/j.ica.2020.119816

    Article  CAS  Google Scholar 

  147. Shi, Q., Huo, S.Q., Wang, C., Ye, G.F., Yu, L.F., Fang, Z.P., Wang, H., and Liu, Z.T., Polym. Degrad. Stabil., 2022, vol. 203, p. 110065. https://doi.org/10.1016/j.polymdegradstab.2022.110065

    Article  CAS  Google Scholar 

  148. Sun, K.F., Guo, L.T., Cai, C., Hou, Z.S., and Ren, Q.Z., ChemCatChem, 2017, vol. 9, p. 4465. https://doi.org/10.1002/cctc.201701219

    Article  CAS  Google Scholar 

  149. Qian, X., Ramos-Docampo, M.A., Ade, C., Brodszkij, E., Westensee, I.N., and Städler, B., Mater. Today Chem., 2022, vol. 23, p. 100743. https://doi.org/10.1016/j.mtchem.2021.100743

    Article  CAS  Google Scholar 

  150. Li, F.F., Cai, G.T., Yu, Y., and Zhang, Y.W., Eur. Polym. J., 2021, vol. 142, p. 110113. https://doi.org/10.1016/j.eurpolymj.2020.110113

    Article  CAS  Google Scholar 

  151. Morisue, M., Hoshino, Y., Shimizu, M., Uemura, S., and Sakurai, S., Chem. Eur. J., 2016, vol. 22, p. 13019. https://doi.org/10.1002/chem.201602968

    Article  CAS  PubMed  Google Scholar 

  152. Wei, P.F., Yan, X.Z., and Huang, F.H., Chem. Soc. Rev., 2015, vol. 44, 815. https://doi.org/10.1039/C4CS00327F

  153. Wajahat, A., Li, X.H., Fang, L.L., Gonsg, W., and Ning, G.L., Supramol. Chem., 2018, vol. 30, p. 72. https://doi.org/10.1080/10610278.2017.1351611

    Article  CAS  Google Scholar 

  154. Tyurin, V.S., Yashchuk, Yu.P., and Beletskaya, I.P., Russ. J. Org. Chem., 2008, vol. 44, p. 1378. https://doi.org/10.1134/S1070428008090224

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the Science and Technology Program of Henan Province (No. 222102230104).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Yu.

Ethics declarations

No conflict of interest was declared by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, F., Li, Y., Wan, Y. et al. Metalloporphyrin-Based Biomimetic Catalysis: Applications, Modifications and Flexible Microenvironment Influences (A Review). Russ J Gen Chem 93, 189–214 (2023). https://doi.org/10.1134/S1070363223010255

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363223010255

Keywords:

Navigation