Skip to main content
Log in

Microwave–Assisted Synthesis of SiO2/ZnO Photocatalyst with Core-Shell Structure

  • Published:
Journal of Contemporary Physics (Armenian Academy of Sciences) Aims and scope

Abstract

The SiO2/ZnO nanocomposite with a core-shell structure for photocatalysis from water-soluble zinc salts and sodium silicate was synthesized using the hydrothermal-microwave method. The physicochemical properties of the synthesized SiO2/ZnO were studied and its photocatalytic activity was tested. The band gaps of the heat-treated composite \(E_{{\text{g}}}^{{{\text{dir}}}}\) and \(E_{{\text{g}}}^{{{\text{indir}}}}\) are 3.35 and 3.32 eV, respectively. The photocatalytic activity of the resulting SiO2/ZnO was determined by the decomposition reaction of methylene blue under UV irradiation. The conversion of methylene blue was determined by optical method. The resulting SiO2/ZnO has high photocatalytic activity. The conducted studies showed the effectiveness of microwave synthesis of SiO2/ZnO with a core-shell structure in comparison with traditional methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. Artemyev, Yu.M. and Ryabchuk, V.K., Vvedeniye v geterogennyy fotokataliz (Introduction to heterogeneous photocatalysis). St. Petersburg, St. Petersburg State University, 1999

  2. Kulakova, I.I. and Lisichkin, G.V., Katalicheskaya khimiya. Chast’ 1. Osnovy kataliza (Catalytic chemistry. Part 1. Basics of catalysis). Moscow, MGU, 2014.

  3. Messih, M.F.A., Shalan, A.E., Sanad, M.F., and Ahmed, A., J. Materials Science: Materials in Electronics, 2019, vol. 30, p. 14291.

    Google Scholar 

  4. Lee, K.M., Lai, C.W., Ngai, K.S., and Juan, J.C., Water Research., 2016, vol. 88, p. 428.

    Article  CAS  PubMed  Google Scholar 

  5. Di Mauro, A., Fragalà, M.E., Privitera, V., and Impellizzeri, G., Materials Science in Semiconductor Processing, 2017, vol. 69, p. 44.

    Article  CAS  Google Scholar 

  6. Shidpour, R., Simchi, A., Ghanbari, F., and Vossoughi, M., Applied Catalysis A: General, 2014, vol. 472, p. 198.

    Article  CAS  Google Scholar 

  7. Ulyankina, A.A., Leontyev, I.N., and Smirnova, N.V., Elektronnyy nauchnyy zhurnal “Inzhenernyy vestnik Dona” (Electronic scientific journal “Engineering Bulletin of the Don”), 2017, no. 4, p. 1 [in Russian].

  8. Zhang, W. and Yanagisawa, K., Chemistry of Materials, 2007, vol. 19, p. 2329.

    Article  CAS  Google Scholar 

  9. Ali, A.M., Ismail, A.A., Najmye, R., and Al-Hajryc, A., J. Photochemistry and Photobiology A: Chemistry, 2014, vol. 275, p. 37.

    Article  CAS  Google Scholar 

  10. Bozhinova, A.S., Kaneva, N.V., Kononova, I.E., Nalimova, S.S., Suleiman, Sh.A., Papazova, K.I., Dimitrov, D.Ts., Moshnikov, V.A., and Terukov, E.I., Fizika i tekhni-ka poluprovodnikov (Physics and technology of semiconductors,) 2013, vol. 47, p. 1662.

  11. Baghramyan, V.V., Sargsyan, A.A., Gurgenyan, N.V., Sargsyan, A.A., Knyazyan, N.B., Arutyunyan, V.V., Aleksanyan, E.M., Grigoryan, N.E., and Sahaakyan, A.A., Theoretic. Found. Chem. Engineering, 2018, vol. 49, p. 897.

    Google Scholar 

  12. Baghramyan, V.V., Sargsyan, A.A., Knyazyan, N.B., Harutyunyan, V.V., Badalyan, A.H., Grigoryan, N.E., Aprahamianc, A., and Manukyan, K.V., Ceramics International., 2020, vol. 46, p. 4992.

    Article  CAS  Google Scholar 

  13. Brittany, H., Microwave Synthesis, CEM publishing, 2002.

    Google Scholar 

  14. Mandal, A.K. and Sen, R., Materials and Manufacturing Processes, 2017, vol. 32, p. 1.

    Article  CAS  Google Scholar 

  15. Sargsyan, A.A., Bagramyan, V.V., Knyazyan, N.B., Ovsepyan, R.K., Agamalyan, N.R., and Badalyan, G.R., J. Contemp. Phys., 2020, vol. 55, p. 360.

    Article  CAS  Google Scholar 

  16. Bagramyan, V.V., Sargsyan, A.A., Knyazyan, N.B., Kazaryan, A.A., and Grigoryan, T.V., Khimicheskiy zhurnal Armenii (Chemical Journal of Armenia), 2021, vol. 74, p. 191.

    Google Scholar 

  17. Bagramyan, V.V., Sargsyan, A.A., Knyazyan, N.B., Kazaryan, A.A., and Grigoryan, T.V., Khimicheskiy zhurnal Armenii (Chemical Journal of Armenia), 2021, vol. 74, p. 191.

    Google Scholar 

  18. Bahadur, N.M., Chowdhury, F., Obaidullah, Md., Hossain, Md.Sh., Rashid, R., Akter, Y., Furusawa, T., Sato, M., and Suzuki, N., J. Nanomaterials, 2019, art. ID 6368789.

  19. Jiang, T., Wang, X., Zhou, J., Chen, D., and Zhao, Z., Nanoscale, 2016, vol. 8, p. 4908.

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Weis, F., Seipenbsch, M., and Kasper, G., Materials, 2015, vol. 8, p. 966.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zheng, J., Liu, Z.Q., Zhao, X.S., Liu, M., Liu, X., and Chu, W., Nanotechnology, 2012, vol. 23, p. 165601.

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Bershtein, A., Gun’ko, V.M., Egorova, L.M., Guzenko, N.V., Pakhlov, E.M., Ryzhov, V.A., and Zarko, V.I., Langmuir, 2010, vol. 26, p. 10968.

    Article  CAS  PubMed  Google Scholar 

  23. Bagramyan, V.V. and Sargsyan, A.A., Khimicheskiy zhurnal Armenii (Chemical Journal of Armenia), 2020, vol. 73, p. 176 [in Russian].

    Google Scholar 

  24. Burdina, A.S., Gagarina, K.I., Gabov, A.A., and Mironov, A.A., Prikladnaya fotonika (Applied Photonics), 2018, vol. 5, p. 22.

    Google Scholar 

  25. Duran, A., Sema, C., Fornes, V., et al., J. Non-Crystalline Solids, 1986, vol. 82, p. 69.

    Article  ADS  CAS  Google Scholar 

  26. Xia, H.L. and Tang, F.Q., J. Phys Chem. B, 2003, vol. 107, p. 9175.

    Article  CAS  Google Scholar 

  27. Galedari, N.A., Rahmani, M., and Tashihi, M., Environ. Sci. Pollution Res., 2017, vol. 24, p. 12655.

    Article  CAS  Google Scholar 

  28. Cenens, J. and Schoonheydt, R.A., Clays and Clay Minerals, 1988, vol. 36, p. 214.

    Article  ADS  CAS  Google Scholar 

  29. Cristiano, E., Hu, Y.-J., Siegfried, M., Kaplan, D., and Nitsch, H., Clays and Clay Mineral, 2011, vol. 5, p. 107.

    Article  ADS  Google Scholar 

  30. Tan, W.-F., Lu, S.-J., Liu, F., Feng, X.-H., He, J.-Z., and Koopal, L.K., Soil Science, 2008, vol. 173, p. 277.

    Article  ADS  CAS  Google Scholar 

Download references

Funding

The research was carried out with the financial support of the Science Committee of the Ministry of Education, Science, Culture and Sports of the Republic of Armenia within the framework of Scientific Project No. 21T-1D146 “Microwave synthesis of composites with photocatalytic properties”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Sargsyan.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by V. Musakhanyan

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sargsyan, A.A., Mnatsakanyan, R.A., Grigoryan, T.V. et al. Microwave–Assisted Synthesis of SiO2/ZnO Photocatalyst with Core-Shell Structure. J. Contemp. Phys. 58, 397–404 (2023). https://doi.org/10.1134/S1068337223040163

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068337223040163

Keywords:

Navigation