Skip to main content
Log in

Investigations of the Impedance Characteristics of a Nanostructured ZnO\(\left\langle {{\text{La}}} \right\rangle \) Sensor for Hydrogen Peroxide Vapors

  • Published:
Journal of Contemporary Physics (Armenian Academy of Sciences) Aims and scope

Abstract

A nanostructured sensor for the detection of hydrogen peroxide vapors has been manufactured. A gas sensitive film based on ZnO metal oxide doped with 2 at % La was obtained by high-frequency magnetron sputtering. In the temperature range from room temperature to 200°C, the impedance and current-voltage characteristics of the ZnO❬La❭ sensor were studied both before and after exposure to hydrogen peroxide vapors. Based on the analysis of the frequency characteristics of the complex impedance, an equivalent electrical circuit for the studied sensor structure was proposed, the parameters of its elements were estimated, and the approximating curves were calculated. It has been shown that the main contribution to the sensitivity of the manufactured sensor comes from the processes occurring on the surface of the semiconductor film. The effect of gas concentration changing on the sensitivity of the ZnO❬La❭ sensor has been studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Zhu, L. and Zeng, W., Sensors and Actuators A: Phys., 2017, vol. 267, p. 242.

    Article  Google Scholar 

  2. Li, Z., Yao, Z.J., Haidry, A.A., Plecenik, T., Xie, L.J., Sun, L.C., and Fatima, Q., Intern. J. Hydrogen Energy, 2018, vol. 43, p. 21 114.

    Article  Google Scholar 

  3. Tian, S., Zhang, Y., Zeng, D., Wang, H., Li, N., Xie, C., Pan, C., and Zhao, X., Phys. Chem. Chem. Phys., 2015, vol. 17, p. 27 437.

    Article  Google Scholar 

  4. Breedon, M., Spencer, M.J.S., and Yarovsky, I., J. Phys. Chem. C, 2010, vol. 114, p. 16603.

    Article  Google Scholar 

  5. Tian, S., Zhang, Y., Zeng, D., Wang, H., Li, N., Xie, C., Pan, C., and Zhao, X., Phys. Chem. Chem. Phys., 2015, vol. 17, p. 27 437.

    Article  Google Scholar 

  6. Yuan, Q., Zhao, Y.P., Li, L., and Wang, T., J. Phys. Chem. C, 2009, vol. 113, p. 6107.

    Article  Google Scholar 

  7. Aroutiounian, V.M., Armenian Journal of Physics, 2018, vol. 11, p. 39.

    Google Scholar 

  8. Ensafi, A.A., Rezaloo, F., and Rezaei, B., Sensors Actuators B Chem., 2016, vol. 231, p. 239.

    Article  Google Scholar 

  9. Lin, C.Y. and Chang, C.T., Sensors and Actuators B: Chem., 2015, vol. 220, p. 695.

    Article  Google Scholar 

  10. Hsu, C.-C., Lo, Y.-R., Lin, Y.-C., at el., Sensors, 2015, vol. 15, p. 25716.

    Article  ADS  Google Scholar 

  11. Chen, S., Yuan, R., Chai, Y., and Hu, F., Microchim. Acta, 2013, vol. 180, p. 15.

    Article  Google Scholar 

  12. Chen, W., Cai, S., Ren, Q.-Q., Wen, W., and Zhao, Y.-D., Analyst, 2012, vol. 137, p. 49.

    Article  ADS  Google Scholar 

  13. Barsoukov, E. and Macdonald, J.R., Impedance Spectroscopy Theory, Experiment, and Applications, New Jersey: John Wiley & Sons, Inc., 2005.

    Book  Google Scholar 

  14. Schipani, F., Miller, D.R., Ponce, M.A., Aldao, C.M., Akbar, S.A., and Morris, P.A., Advanced Sciences and Engineering, 2016, vol. 5, p. 86.

    Article  Google Scholar 

  15. Al-Hardan, N.H., Abdullah, M.J., and Aziz, A.A., Intern. J. Hydrogen Energy, 2010, vol. 35, p. 4428.

    Article  Google Scholar 

  16. Hernández-Ramírez, F., Tarancón, A., Casals, O., Arbiol, J., Romano-Rodríguez, A., and Morante. J.R., Sensors and Actuators, B: Chem., 2007, vol. 121, p. 3.

    Article  Google Scholar 

  17. Adamchuck, D.V., Ksenevich, V.K., Gorbachuk, N.I., and Shimanskij, V.I., Devices and Methods of Measurements, 2016, vol. 7, p. 312.

    Article  Google Scholar 

  18. Sumi, S., Rao, P.P., and Koshy, P., Ceramics International, 2015, vol. 41, p. 5992.

    Article  Google Scholar 

  19. Dutta, K., IEEE Sensors J., 2021, vol. 21, p. 22 220.

    Article  Google Scholar 

  20. Hüsler, T.P., Wiggers, H., Kruis, F.F., and Lorke, A., Sensors Actuators B, 2005, vol. 109, p. 13.

    Article  Google Scholar 

  21. Aleksanyan, M.S., Sayunts, A.G., Shahkhatuni, G.H., Aroutiounian, V.M., and Shahnazaryan, G.E., J. Contemp. Phys., 2021, vol. 56, p. 352.

    Article  Google Scholar 

  22. Ma, N., Suematsu, K., Yuasa, M., Kida, T., and Shimanoe, K., ACS Applied Materials and Interfaces, 2015, vol. 7, p. 5863.

    Article  Google Scholar 

  23. Aroutiounian, V., Arakelyan, V., Aleksanyan, M., Shahnazaryan, G., Kacer, P., Picha, P., Kovarik, J., Pekarek, J., and Joost, B., J. Sens. Sens. Syst., 2018, vol. 7, p. 1.

    Article  Google Scholar 

  24. Shahkhatuni, G.H., Aroutiounian, V.M., Arakelyan, V.M., Aleksanyan, M.S., and Shahnazaryan. G.E., J. Contemp. Phys., 2019, vol. 54, p. 188.

    Article  Google Scholar 

Download references

Funding

The work was supported by the Science Committee of RA, in the frames of the research project no. 21T-2J062.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Shahkhatuni.

Ethics declarations

The authors declare no conflict of interest.

Additional information

Translated by V.M. Aroutiounian

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahnazaryan, G.E., Shahkhatuni, G.A., Aleksanyan, M.S. et al. Investigations of the Impedance Characteristics of a Nanostructured ZnO\(\left\langle {{\text{La}}} \right\rangle \) Sensor for Hydrogen Peroxide Vapors. J. Contemp. Phys. 57, 254–262 (2022). https://doi.org/10.1134/S106833722203015X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106833722203015X

Keywords:

Navigation