Skip to main content
Log in

Synthesis of Some New Coumarin-thiazolidine-2,4-dione-1,2,3-triazole Hybrids as Tubulin Targeting Anti-Lung Cancer Agents

  • Published:
Russian Journal of Bioorganic Chemistry Aims and scope Submit manuscript

Abstract

Objective: Synthesis of some new coumarin-thiazolidine-2,4-dione-1,2,3-triazoles and evaluation of their anti-lung cancer activity. Methods: Well-known reaction like Knoevenagel condensation and Cu (I) catalyzed azide-alkyne cycloaddition were used. MTT assay was used in anticancer activity. Autodock tools were used foe docking studies. Results and Discussion: The fourteen compounds were screened against A549 and NCI-H460 and compared with Doxorubicin. In addition to this tubulin polymerization inhibition assay and docking studies were performed on some active compounds. Conclusions: Synthesized some new 1,2,3-triazole hybrids and tested their anticancer activity and screened for binding interaction with tubulin. Some of the compounds were found active.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.

Similar content being viewed by others

DATA AVAILABILITY

The data that support the findings of this study are available from the corresponding author upon reasonable request.

REFERENCES

  1. Nasim, F., Sabath, B.F., and Eapen, G.A., Med. Clin. North Am., 2019, vol. 103, pp. 463–473. https://doi.org/10.1016/j.mcna.2018.12.006

    Article  PubMed  Google Scholar 

  2. Willis, C., Fiander, M., Tran, D., Korytowsky, B., Thomas, J.M., and Calderon, F., Oncotarget., 2019, vol. 10, pp. 6604–6622. https://doi.org/10.18632/oncotarget.27287

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bade, B.C. and Dela Cruz, C.S., Clin. Chest. Med., 2020, vol. 41, pp. 1–24. https://doi.org/10.1016/j.ccm.2019.10.001

    Article  PubMed  Google Scholar 

  4. Majem, B., Nadal, E., and Munoz-Pinedo, C., Cell Develop. Biol., 2020, vol. 98, pp. 54–62. https://doi.org/10.1016/j.semcdb.2019.06.004

    Article  CAS  Google Scholar 

  5. Salehi, M., Movahedpour, A., Tayarani, A., Shabaninejad, Z., Pourhanifeh, M.H., and Mortezapour, E., Phytotherapy Res., 2020, vol. 34, pp. 2557–2576. https://doi.org/10.1002/ptr.6704

    Article  CAS  Google Scholar 

  6. Zhang, T., Li, Y., Zhang, H., Wang, X., Liu, X., and Li, L., Adv. Exp. Med. Biol., 2020, vol. 1255, pp. 99–108. https://doi.org/10.1007/978-981-15-4494-1-8

    Article  CAS  PubMed  Google Scholar 

  7. Gray, M.E., Meehan, J., Sullivan, P., Marland, J.R.K., Greenhalgh, S.N., and Gregson, R., Front. Oncol., 2019, vol. 9, p. e335. https://doi.org/10.3389/fonc.2019.00335

  8. Coakley, M. and Popat, S., Medicine, 2020, vol. 48, pp. 273–278. https://doi.org/10.1016/j.mpmed

    Article  Google Scholar 

  9. Reddy, T.S., Kulhari, H., Reddy, V.G., Subba Rao, A.V., Bansal, V., Kamal, A., and Shukla, R., Org. Biomol. Chem., 2015, vol. 13, pp. 10136–10149. https://doi.org/10.1039/C5OB00842E

    Article  CAS  Google Scholar 

  10. Stefely, J.A., Palchaudhuri, R., Miller, P.A., Peterson, R.J., Moraski, G.C., Hergenrother, P.J., and Miller, M.J., J. Med. Chem., 2010, vol. 53, pp. 3389–3395. https://doi.org/10.1021/jm1000979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ferreira, V.F., Da Rocha, D.R., Da Silva, F.C., Ferreira, P.G., Boechat, N.A., and Magalhaes, J.L., Exp. Opin. Ther. Pat., 2013, vol. 23, pp. 319–331. https://doi.org/10.1517/13543

    Article  CAS  Google Scholar 

  12. Chen, C., Ju, R., Shi, J., Chen, W., Sun, F., and Zhu, L., J. Pharmacol. Exp. Ther., 2017, vol. 362, pp. 219–229. https://doi.org/10.1124/jpet.117.240986

    Article  CAS  PubMed  Google Scholar 

  13. Ting, L., Xiangyang, S., Wenhong, L., Guihua, H., and Feng, G., Front Pharmacol., 2021, vol. 12, p. 661173. https://doi.org/10.3389/fphar.2021.661173

    Article  CAS  Google Scholar 

  14. Jalhan, S., Singh, S., Saini, R., Sethi, N.S., and Jain, U.K., Asian. J. Pharm Clin. Res., 2017, vol. 10, pp. 38–43. https://doi.org/10.22159/ajpcr.2017.v10i7.18461

    Article  CAS  Google Scholar 

  15. Manjinder, K., Swarandeep, K., Sonali, S., Yogita, B., and Gulshan, B., Anti-Cancer Agents Med. Chem., 2015, vol. 15, pp. 1032–1048. https://doi.org/10.2174/187152061

    Article  Google Scholar 

  16. Manvendra, K., Ramit, S., Jyoti, D., and Vikas, J., Anti-Cancer Agents Med. Chem., 2018, vol. 7, pp. 964–984. https://doi.org/10.2174/1871520618666171229185926

    Article  CAS  Google Scholar 

  17. Al-Warhi, T., Sabt, A., Elkaeed, E.B., and Eldehna, W.M., Bioorg. Chem., 2020, vol. 103, p. e104163. https://doi.org/10.1016/j.bioorg.2020.104163

  18. Welsch, M.E., Snyder, S.A., and Stockwell, B.R., Curr. Opin. Chem. Biol., 2010, vol. 14, pp. 347–361. https://doi.org/10.1016/j.cbpa.2010.02.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang, Q., Zhou, H., Zhai, S., and Yan, B., Curr. Pharm. Des., 2010, vol. 16, pp. 1826–1842. https://doi.org/10.2174/138161210791208983

    Article  CAS  PubMed  Google Scholar 

  20. Xie, J., Li, Q., Ding, X., and Gao, Y., Oncol. Target, 2017, vol. 8, pp. 50814–50823. https://doi.org/10.18632/oncotarget.15135

    Article  Google Scholar 

  21. Liu, K., Rao, W., Parikh, H., Li, Q., Guo, T.L., Grant, S., Kellogg, G.E., and Zhang, S., Eur. J. Med. Chem., 2012, vol. 47, pp. 125–137. https://doi.org/10.1016/j.ejmech.2011.10.031

    Article  CAS  PubMed  Google Scholar 

  22. Keeton, E.K., McEachern, K., Dillman, K.S., Palakurthi, S., Cao, Y., Grondine, M.R., Kaur, S., Wang, S., Chen, Y., Wu, A., Shen, M., Gibbons, F.D., Lamb, M.L., Zheng, X., Stone, R.M., Deangelo, D.J., Platanias, L.C., Dakin, L.A., Chen, H., Lyne, P.D., and Huszar, D., Blood, 2014, vol. 123, pp. 905–913. https://doi.org/10.1016/j.ejmech.2011.10.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lin, Y. W., Beharry, Z. M., Hill, E. G., Song, J. H., Wang, W., Xia, Z., Zhang, Z., Aplan, P.D., Aster, J.C., Smith, C.D., and Kraft, A.S., Blood, 2010, vol. 115, pp. 824–833. https://doi.org/10.1182/blood-2009-07-233445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Al-Hazmi, G.H., Russ. J. Bioorg. Chem., 2023, vol. 49, pp. 1000–1013. https://doi.org/10.1134/S1068162023050072

    Article  CAS  Google Scholar 

  25. Angelova, V.T., Buyukliev, R., Yovkova, E.K., Valkova, I., Momekov, G., and Vulcheva, V., Russ. J. Bioorg. Chem., 2021, vol. 47, pp. 122–133. https://doi.org/10.1134/S1068162021010027

    Article  CAS  Google Scholar 

  26. Asati, V., Mahapatra, D.K., and Bharti, S.K., Eur. J. Med. Chem., 2014, vol. 87, pp. 814–833. https://doi.org/10.1016/j.ejmech.2014.10.025

    Article  CAS  PubMed  Google Scholar 

  27. Beharry, Z., Zemskova, M., Mahajan, S., Zhang, F., Ma, J., Xia, Z., Lilly, M., Smith, C. D., and Kraft, A.S., Mol. Cancer. Ther., 2009, vol. 8, pp. 1473–1483. https://doi.org/10.1158/1535-7163.MCT-08-1037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gangadhar, K.H., Benarjee, V., and Ratnamala, A., ChemistrySelect, 2022, vol. 7, p. e202200270. https://doi.org/10.1002/slct.202200270

  29. Venu, K., Saritha, B., and Sailaja, B.B.V., Tetrahedron, 2022, vol. 124, p. 132991. https://doi.org/10.1016/j.tet.2022.132991

    Article  CAS  Google Scholar 

  30. Aziz, N.A.A.M., George, R.F., Adl, K.E., and Mahmoud, W.R., Arch. Pharm., 2022, p. e2200465. https://doi.org/10.1002/ardp.202200465

  31. Mallikarjuna, B., Satheesh Kumar, N., Praveen Kumar, K., Narsimha, S., Ravinde, M., and Narasimha Swamy, T., ChemistrySelect, 2023, vol. 8, p. e202204414. https://doi.org/10.1002/slct.202204414

  32. Nagaraju, A., Nukala, S.K., Thirukovela, N.S., and Ravinder, M., Russ. J. Bioorg. Chem., 2023, vol. 49, pp. 976–987. https://doi.org/10.1134/S1068162023050047

    Article  CAS  Google Scholar 

  33. Kosurkar, U.B., Pamanji, R., Janardhan, S., Nanubolu, J., Dadmal, T.L., Mali, S.N., and Kumbhare, R.M., Russ. J. Bioorg. Chem., 2022, vol. 48, pp. S154–S165. https://doi.org/10.1134/S1068162023010144

  34. Junior, C.V., Danuello, A., Bolzani, V.D.S., Barreiro, E.J., and Fraga, C.A.M., Curr. Med. Chem. 2007, vol. 14, pp. 1829–1852. https://doi.org/10.2174/092986707781058805

  35. Gediya, L.K. and Njar, V.C., Exp. Opin. Drug Discovery, 2009, vol. 4, pp. 1099–1111. https://doi.org/10.2174/1570180814666170110122027

    Article  CAS  Google Scholar 

  36. Milik, S.N., Lasheen, D.S., Serya, R.A.T., and Abouzid, K.A.M., Eur. J. Med. Chem., 2017, vol. 142, pp. 131–151. https://doi.org/10.1016/j.ejmech.2017.07.023

    Article  CAS  PubMed  Google Scholar 

  37. Zhu, D., Huang, H., Pinkas, D.M., Luo, J., Ganguly, D., Fox, A.E., Arner, E., Xiang, Q., Tu, Z.C., Bullock, A.N., Brekken, R.A., Ding, K., and Lu, X., J. Med. Chem., 2019, vol. 62, pp. 7431–7444. https://doi.org/10.1021/acs.jmedchem.9b00365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Salem, M.S.H., Abdel Aziz, Y.M., Elgawish, M.S., Said, M.M., and Abouzid, K.A.M., Bioorg. Chem., 2020, vol. 94, p. 103472. https://doi.org/10.1016/j.bioorg.2019.103472

    Article  CAS  PubMed  Google Scholar 

  39. Bozdag, M., Ferraroni, M., Ward, C., Carta, F., Bua, S., Angeli, A., Langdon, S.P., Kunkler, I.H., Al-Tamimi, A.M.S., and Supuran, C.T., Eur. J. Med. Chem., 2019, vol. 182, p. 111600. https://doi.org/10.1016/j.ejmech.2019.111600

    Article  CAS  PubMed  Google Scholar 

  40. Liu, C.F., Shen, Q.K., Li, J.J., Tian, Y.S., and Quan, Z., J. Enzyme Inhib. Med. Chem., 2017, vol. 32, pp. 1111–1119. https://doi.org/10.1080/14756366.2017.1344982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Goud, N.S., Pooladanda, V., Mahammad, G.S., Jakkula, P., Gatreddi, S., and Qureshi, I.A., Chem. Biol. Drug Des., 2019, vol. 94, pp. 1919–1929. https://doi.org/10.1111/cbdd.13578

    Article  CAS  PubMed  Google Scholar 

  42. Kraljevic, T.G., Harej, A., Sedic, M., Pavelic, S.K., Stepanic, V., and Drenjancevic, D., Eur. J. Med. Chem., 2016, vol. 124, pp. 794–808. https://doi.org/10.1016/j.ejmech.2016.08.062

    Article  CAS  PubMed  Google Scholar 

  43. Diao, Q.P., Guo, H., and Wang, G.Q., J. Heterocycl. Chem., 2019, vol. 56, pp. 1667–1671. https://doi.org/10.1002/jhet.3538

    Article  CAS  Google Scholar 

  44. Xu, Z., Zhao, S.J., Lv, Z.S., Gao, F., Wang, Y.L., and Zhang, F., J. Heterocycl. Chem., 2019, vol. 56, pp. 1127–1132. https://doi.org/10.1002/jhet.3475

    Article  CAS  Google Scholar 

  45. Bochkov, A.Y., Akchurin, I.O., and Traven, V.F., Heterocycl. Comm., 2017, vol. 23, pp. 75–78. https://doi.org/10.1515/hc-2017-0038

    Article  CAS  Google Scholar 

  46. Elzahhar, P.A., Alaaeddine, R., Ibrahim, T.M., Nassra, R., Ismail, A., Chua, B.S.K., Frkic, R.L., Bruning, J.B., Wallner, N., Knape, T., Von Knethen, A., Labib, H., El-Yazbi, A.F., and Belal, A.S.F., Eur. J. Med. Chem., 2019, vol. 167, pp. 562–582. https://doi.org/10.1016/j.ejmech.2019.02.034

    Article  CAS  PubMed  Google Scholar 

  47. Jordan, M.A. and Wilson, L., Nat. Rev. Cancer, 2004, vol. 4, pp. 253–265. https://doi.org/10.1038/nrc1317

    Article  CAS  PubMed  Google Scholar 

  48. Ceramella, J., Caruso, A., Occhiuzzi, M.A., Iacopetta, D., Barbarossa, A., Rizzuti, B., Dallemagne, P., Rault, S., Kashef, H.El, Saturnino, C., Grande, F., and Sinicropi, M.S., Eur. J. Med. Chem., 2019, vol. 1, p. 111583. https://doi.org/10.1016/j.ejmech.2019.111583

    Article  CAS  Google Scholar 

  49. Mohamed, H.S., Amin, N.H., El-Saadi, M.T., and Abdel-Rahman, H.M., Bioorg. Chem., 2022, vol. 16, p. 105687. https://doi.org/10.1016/j.bioorg.2022.105687

    Article  CAS  Google Scholar 

  50. Sakchaisri, K., Kim, S.O., and Hwang, J., PLoS One, 2017, vol. 12, p. 0173311. https://doi.org/10.1371/journal.pone.0173311

    Article  CAS  Google Scholar 

  51. Chen, H., Lin, Z., Arnst, K. E., Miller, D.D., and Li, W., Molecules, 2017, vol. 22, Article ID: 1281. https://doi.org/10.3390/molecules22081281

  52. Wang, G., Li, C., He, L., Lei, K., Wang, F., Pu, Y., Yang, Z., Cao, D., Ma, L., Chen, J., Sang, Y., Liang, X., Xiang, M., Peng, A., Wei, Y., and Chen, L., Bioorg. Med. Chem., 2014, vol. 22, pp. 2060–2079. https://doi.org/10.1016/j.bmc.2014.02.028

    Article  CAS  PubMed  Google Scholar 

  53. Messaoudi, S., Treguier, B., Hamze, A., Provot, O., Peyrat, J.F., De Losada, J.R. Liu, J. M., Bignon, J., Bakala, J.W., Thoret, S., Dubois, J., Brion, J.D., and Alami, M., J. Med. Chem., 2009, vol. 52, pp. 4538–4542. https://doi.org/10.1021/jm900321u

    Article  CAS  PubMed  Google Scholar 

  54. Anjali, R. and Vijaya Bhaskar Reddy, A., EJMECH Rep., 2022, vol. 5, p. 100038. https://doi.org/10.1016/j.ejmcr.2022.100038

    Article  CAS  Google Scholar 

  55. Mohammed, H.H.H., El-Hafeez, A.A.A., Ebeid, K., Mekkawy, A.I., Abourehab, Md.A. S., Wafa, E.I., Alhaj-Suliman, S.O., Salem, A.K., Ghosh, P., Rahma, G.E.D.A.A., Hayallah, A.M., and Abbas, S.H., J. Enzyme Inhib. Med. Chem., 2022, vol. 37, pp. 1346–1363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Fu, D. J., Li, P., Wu, B. W., Zhao, Ch.B., and Zang, S.Y., Eur. J. Med. Chem., 2019, vol. 165, pp. 309–322. https://doi.org/10.1016/j.ejmech.2019.01.033

    Article  CAS  PubMed  Google Scholar 

  57. Odlo, K., Hentzen, J., Chabert, J.F.D., Ducki, S., Gani, O.A.B.S.M., and Sylte, I., Bioorg. Med. Chem., 2008, vol. 16, pp. 4829–4838. https://doi.org/10.1080/14756366.2022

    Article  CAS  PubMed  Google Scholar 

  58. Qi, Z.Y., Hao, S.Y., Bian, H.L., Hui, L., and Chen, S.W., Bioorg. Chem., 2020, vol. 94, p. 103392. https://doi.org/10.1016/j.bioorg.2019.103392

    Article  CAS  PubMed  Google Scholar 

  59. Solum, E.J., Vik, A., and Hansen, T.V., Steroids, 2014, vol. 87, pp. 46–53. https://doi.org/10.1016/j.steroids.2014.05.020

    Article  CAS  PubMed  Google Scholar 

  60. Hamel, E., Cell. Biochem. Biophys., 2003, vol. 38, pp. 1–21. https://doi.org/10.1385/CBB:38:1:1

    Article  CAS  PubMed  Google Scholar 

  61. Ravelli, R., Gigant, B., Curmi, P., Jourdain, I., Lachkar, S., Sobel, A., and Knossow, M., Nature, 2004, vol. 428, pp. 198–202. https://doi.org/10.1038/nature02393

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by regular institutional funding, and no additional grants were obtained.

Author information

Authors and Affiliations

Authors

Contributions

The author TKK—involved in designing the scheme and writing the manuscript; the author BAK—involved in screening compounds towards anticancer activity; the author BK—involved in molecular docking studies and tubulin polymerization inhibition assay; the author BR—involved in the synthesis and characterization compounds.

Corresponding author

Correspondence to T. Kranthi Kumar.

Ethics declarations

This article does not contain any studies involving patients or animals as test objects.

Informed consent was not required for this article. No conflict of interest was declared by the authors.

Additional information

Publisher's Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramakrishna, B., Karthik, B., Kumar, B.A. et al. Synthesis of Some New Coumarin-thiazolidine-2,4-dione-1,2,3-triazole Hybrids as Tubulin Targeting Anti-Lung Cancer Agents. Russ J Bioorg Chem 50, 282–292 (2024). https://doi.org/10.1134/S1068162024020109

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162024020109

Keywords:

Navigation