Skip to main content
Log in

Synthesis, Identification, Antioxidant, Molecular Docking, and In Silico ADME Study for Some New Derivatives Containing Thiourea Moiety

  • Published:
Russian Journal of Bioorganic Chemistry Aims and scope Submit manuscript

Abstract

Objective: Synthesized a series of new thiourea (TU) derivatives, tested their antioxidant activity, and investigated their expected biological activity by theoretical study (computational methods). Methods: The derivatives were made using a one-pot reaction with two steps. Initially, succinyl chloride was mixed with KSCN to make succinyl isothiocyanate. Then, primary and secondary amines were used to make TU derivatives. The theoretical studies were done by Swiss ADME and molecular docking via Genetic Optimization of Linkage Docking (GOLD). Then evaluate antioxidant activity using the DPPH scavenging method. Results: FT-IR, 1H NMR, and 13C NMR spectroscopy show the verification of all the prepared derivatives. Compounds (II), (VIII), (III), and (V) are considered good antioxidant agents compared with L-ascorbic acid as a reference. The most active protein binding sites are on derivatives (IV), (VIII), (II), and (V), respectively. Theoretically, all derivatives have excellent docking scores and good ADME properties. Discussion: Because they have two TU moieties, synthesized derivatives have better docking scores than colchicine in the 1SA0 active site. They also have good ADME properties and antioxidant activity. Conclusions: All synthesized compounds are considered good antioxidant agents. Of all the synthesized compounds, (IV) has the best results compared to colchicine, can be thought of as an excellent antibacterial agent against Escherichia coli, and is an anti-breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Scheme 1.
Fig. 5.

Similar content being viewed by others

DATA AVAILABILITY

The data that support the findings of this study are available from the corresponding author upon reasonable request.

REFERENCES

  1. Saeed, A., Flörke, U., and Erben, M.F., J. Sulfur Chem., 2014, vol. 35, pp. 318–355. https://doi.org/10.1080/17415993.2013.834904

    Article  CAS  Google Scholar 

  2. Mohapatra, R.K., Das, P.K., Pradhan, M.K., El-Ajaily, M.M., Das, D., Salem, H.F., Mahanta, U., Badhei, G., Parhi, P.K., Maihub, A.A., and E-Zahan, M.K., Comm. Inorg. Chem., 2019, vol. 0, pp. 1–61. https://doi.org/10.1080/02603594.2019.1594204

  3. Patujo, J., Azeem, M., Khan, M., Muhammad, H., Raheel, A., Fatima, S., Mirza, B., Hussain, Z., and Badshah, A., Bioorg. Chem., 2021 vol. 106, Article ID: 104180. https://doi.org/10.1016/j.bioorg.2020.104180

  4. Steppeler, F., Iwan, D., Wojaczyńska, E., and Wojaczyński, J., Molecules, 2020, vol. 25, p. 401. https://doi.org/10.3390/molecules25020401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Al-Jeilawi, O.H.R. and Al-yassiri, M.A.H., Iraqi J. Sci., 2015 vol. 56, pp. 1–11.

    Google Scholar 

  6. Salman, T.A. and Hameed, S.T, Baghdad Sci. J., 2016, vol. 13, pp. 40–47. https://doi.org/10.21123/bsj.13.2.40-47

    Article  ADS  Google Scholar 

  7. Shamaya, A.N.S., Al-jeilawi, O.H.R., and Khudhair, N.A., Chem. Methodologies, 2021, vol. 5, pp. 331–340.

    CAS  Google Scholar 

  8. Al-Jeilawi, U.H.R., Al-Majidi, S.M.H., and AlSaadie, K.A.S., J. Al-Nahrain University Sci., 2013, vol. 16, pp. 80–93. https://doi.org/10.22401/jnus.16.4.09

    Article  Google Scholar 

  9. Channar, P.A., Alharthy, R.D., Ejaz, S.A., Saeed, A., and Iqbal, J., Molecules, 2022, vol. 27, pp. 1­–12. https://doi.org/10.3390/molecules27248723

    Article  CAS  Google Scholar 

  10. Abdi, H., Amouzegar, A., and Azizi, F., Iranian J. Pharm Res., 2019, vol. 18, pp. 1–12. https://doi.org/10.22037/ijpr.2020.112892.14005

    Article  CAS  Google Scholar 

  11. Al-Khuzaie, M.G. and Al-Majidi, S.M., Iraqi J. Sci., 2014, vol. 55, pp. 582–593.

    Google Scholar 

  12. Lau, L. and Paschke, R., Encyclopedia Mol. Pharmacol., 2020, pp. 1–7. https://doi.org/10.1007/978-3-030-21573-6_19-1

  13. Hardjono, S., Siswandono, S., and Andayani, R., Indonesian J. Biotechnol., 2018, vol. 22, p. 76. https://doi.org/10.22146/ijbiotech.27171

    Article  Google Scholar 

  14. Shoaib, M., Hussain, H., Shah, S.W.A., Umar, M.N., and Ullah, A., Pakistan J. Pharmaceutical Sci., 2017, vol. 30, pp. 1351–1356. https://doi.org/10.3390/molecules27207129

    Article  CAS  Google Scholar 

  15. Yonova, P.A. and Stoilkova, G.M., J. Plant Growth Regulat., 2004, vol. 23, pp. 280–291. https://doi.org/10.1007/s00344-003-0054-3

    Article  CAS  Google Scholar 

  16. Duan, L.-P., Xue, J., Xu, L.-L., and Zhang, H.-B., Molecules, 2010, vol. 15, pp. 6941–6947. https://doi.org/10.3390/molecules15106941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Oleiwi, A.Q., Al-jeilawi, O.H.R., and Dayl, S.A., Iraqi J. Sci., 2023, vol. 64, pp. 1–12. https://doi.org/10.24996/ijs.2023.64.1.1

    Article  Google Scholar 

  18. Naz, S., Zahoor, M., Umar, M.N., Alghamdi, S., Sahibzada, M.U.K., and Ulbari, W., Open Chem., 2020, vol. 18, pp. 764–777. https://doi.org/10.1515/chem-2020-0139

    Article  CAS  Google Scholar 

  19. Aziz, H., Saeed, A., Khan, M.A., Afridi, S., Jabeen, F., Ashfaq-ur-Rehman, and Hashim, M., Chem. Biodiversity, 2020, vol. 17, pp.1–37. https://doi.org/10.1002/cbdv.201900509

    Article  CAS  Google Scholar 

  20. Antypenko, L., Meyer, F., Kholodniak, O., Sadykova, Z., Jirásková, T., Troianova, A., Buhaiova, V., Cao, S., Kovalenko, S., Garbe, L.-A., and Steffens, K.G., Archiv der Pharmazie, 2019, vol. 352, Article ID: 1800275. https://doi.org/10.1002/ardp.201800275

  21. Abbas, S.Y., Al-Harbi, R.A.K., and Sh El-Sharief, M.A.M., Eur. J. Med. Chem., 2020, vol. 198, Article ID: 112363. https://doi.org/10.1016/j.ejmech.2020.112363

  22. Bielenica, A., Sanna, G., Madeddu, S., Struga, M., Jóźwiak, M., Kozioł, A.E., Sawczenko, A., Materek, I.B., Serra, A., and Giliberti, G., Chem. Biol. Drug Des., 2017, vol. 90, pp. 883–891. https://doi.org/10.1111/cbdd.13009

    Article  CAS  PubMed  Google Scholar 

  23. D’Cruz, O. and Uckun, F., Current HIV Res., 2006, vol. 4, pp. 329–345. https://doi.org/10.2174/157016206777709519

    Article  Google Scholar 

  24. Azeem Shakeel, Ataf Ali Altaf, and Ashfaq Mahmood Qureshi, A.B., J. Drug Des. Med. Chem., 2016, vol. 2, pp. 10–20. https://doi.org/10.11648/j.jddmc.20160201.12

    Article  Google Scholar 

  25. Kadir, M.A., Ramli, R., Yusof, M.S.M., Ismail, N., Ngah, N., and Haris, N.S.H., Data in Brief., 2019, vol. 27, Article ID: 104651. https://doi.org/10.1016/j.dib.2019.104651

  26. Arshad, N., Parveen, U., Channar, P.A., Saeed, A., Saeed, W.S., Perveen, F., Javed, A., Ismail, H., Mir, M.I., Ahmed, A., Azad, B., and Khan, I., Molecules, 2023 vol. 28, pp. 1–20. https://doi.org/10.3390/molecules28062707

    Article  CAS  Google Scholar 

  27. Thakur, A.S., Deshmukh, R., Jha, A.K., and Kumar, P.S., J. King Saud University-Sci., 2018, vol. 30, pp. 330–336. https://doi.org/10.1016/j.jksus.2016.12.006

    Article  Google Scholar 

  28. Calixto, S.D., Simão, T.L.B.V., Palmeira-Mello, M.V., Viana, G.M., Assumpção, P.W.M.C., Rezende, M.G., do Espirito Santo, C.C., de Oliveira Mussi, V., Rodrigues, C.R., Lasunskaia, E., de Souza, A.M.T., Cabral, L.M., and Muzitano, M.F., Bioorg. Med. Chem., 2022, vol. 53, Article ID: 116506. https://doi.org/10.1016/j.bmc.2021.116506

  29. Alagarsamy, V., Murugananthan, G., and Venkateshperumal, R., Biol. Pharm. Bull., 2003, vol. 26, pp. 1711–1714. https://doi.org/10.1248/bpb.26.1711

    Article  CAS  PubMed  Google Scholar 

  30. Nedeljković, N., Dobričić, V., Bošković, J., Vesović, M., Bradić, J., Anđić, M., Kočović, A., Jeremić, N., Novaković, J., Jakovljević, V., Vujić, Z., and Nikolić, M., Pharmaceuticals, 2023, vol. 16, Article ID: 666. https://doi.org/10.3390/ph16050666

  31. Faidallah, H.M., Al-Mohammadi, M.M., Alamry, K.A., and Khan, K.A., J. Enzyme Inhibit. Med. Chem., 2016, vol. 31, pp. 157–163. https://doi.org/10.1080/14756366.2016.1180594

    Article  CAS  Google Scholar 

  32. Krishna Reddy, R.C., Rasheed, S., Subba Rao, D., Adam, S., Venkata Rami Reddy, Y., and Raju, C.N., Sci. World J., 2013 vol. 2013, pp. 1–10. https://doi.org/10.1155/2013/682603

    Article  CAS  Google Scholar 

  33. Allawi, M.M., Mahdi, M.F., and Raauf, A.M.R., Al Mustansiriyah J. Pharm. Sci., 2019, vol. 19, pp. 125–139. https://doi.org/10.32947/ajps.v19i4.644

    Article  Google Scholar 

  34. Krzywik, J., Maj, E., Nasulewicz-Goldeman, A., Mozga, W., Wietrzyk, J., and Huczyński, A., Bioorg. Med. Chem. Lett., 2021, vol. 47, Article ID: 128197. https://doi.org/10.1016/j.bmcl.2021.128197

  35. Hastie, S.B., Pharm. Therapeutics, 1991, vol. 51, pp. 377–401. https://doi.org/10.1016/0163-7258(91)90067-V

    Article  CAS  Google Scholar 

  36. Haines, A., Bolt, J., Dumont, Z., and Semchuk, W., Canadian Pharm. J., 2018, vol. 151, pp. 107–113. https://doi.org/10.1177/1715163518754916

    Article  Google Scholar 

  37. Ravelli, R.B.G., Gigant, B., Curmi, P.A., Jourdain, I., Lachkar, S., Sobel, A., and Knossow, M., Nature, 2004, vol. 428, pp. 198–202. https://doi.org/10.1038/nature02393

    Article  CAS  PubMed  ADS  Google Scholar 

  38. Lipinski, C.A., Lombardo, F., Dominy, B.W., and Feeney, P.J., Adv. Drug Deliv. Rev., 1997, vol. 23, pp. 3–25. https://doi.org/10.1016/S0169-409X(96)00423-1

    Article  CAS  Google Scholar 

  39. Kadhim, Y.M., Lafta, S.J., and Mahdi, M.F., J. Biochem. Tech., 2020, vol. 11, pp. 88–101.

    CAS  Google Scholar 

  40. Ronchetti, R., Moroni, G., Carotti, A., Gioiello, A., and Camaioni, E., RSC Med. Chem., 2021, vol. 12, pp. 1046–1064. https://doi.org/10.1039/D1MD00058F

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ahmed, A., Saeed, A., Ali, O.M., El-Bahy, Z.M., Channar, P.A., Khurshid, A., Tehzeeb, A., Ashraf, Z., Raza, H., Ul-Hamid, A., and Hassan, M., Molecules, 2021, vol. 26, pp. 1–15. https://doi.org/10.3390/molecules26237150

    Article  CAS  Google Scholar 

  42. Silverstein, R.M., Webster, F.X., and Kiemle, D.J., Spectrometric Identificat. Org. Comp., John Wiley & Sons, Inc., 7th ed., New York: State University (2005) .

  43. Rasheed, H.A.M. and Al-Majidi, S.M.H., Nat. Product Res., 2023, Article ID: 2195178. https://doi.org/10.1080/14786419.2023.2195178

  44. Lipinski, C.A., Lombardo, F., Dominy, B.W., and Feeney, P.J., Adv. Drug Deliv. Rev., 2012, vol. 64, pp. 4–17. https://doi.org/10.1016/j.addr.2012.09.019

    Article  Google Scholar 

  45. Raauf, A.M.R., Omar, T.N.A., Mahdi, M.F., and Fadhil, H.R., Nat. Product Res., 2022, Article ID: 2117174. https://doi.org/10.1080/14786419.2022.2117174

  46. Channar, S.A., Channar, P.A., Saeed, A., Alsfouk, A.A., Ejaz, S.A., Ujan, R., Noor, R., Bilal, M.S., Abbas, Q., Hussain, Z., Khan, B.A., Raza, H., Indher, H.A.B., and Mahesar, P.A., Med. Chem. Res., 2022, vol. 31, pp. 1792–1802. https://doi.org/10.1007/s00044-022-02945-4

    Article  CAS  Google Scholar 

  47. Ali, R.A., Al-Tamimi, E.O., and Abdul-Wadood, S., Russ. J. Bioorg. Chem., 2022, vol. 48, pp. S115–S120. https://doi.org/10.1134/S1068162023010041

  48. Hussein, M.S. and Al-Lami, N., Iraqi J. Sci., 2022, vol. 63, pp. 4620–4636. https://doi.org/10.24996/ijs.2022.63.11.1

    Article  Google Scholar 

  49. Li, F., Li, Z., Wei, Y., Zhang, L., Ning, E., Yu, L., Zhu, J., Wang, X., Ma, Y., and Fan, Y., Nat. Prod. Res., 2022, Article ID: 2121829. https://doi.org/10.1080/14786419.2022.2121829

  50. Azzam, R.A., Elboshi, H.A., and Elgemeie, G.H., Antibiotics, 2022, vol. 11, pp. 1–20. https://doi.org/10.3390/antibiotics11121799

    Article  CAS  Google Scholar 

  51. Amer, M., Mahdi, M.F., Khan, A.K., and Raauf, A.M.R., J. Pharm. Negative Res., 2022, vol. 13, pp. 217–228. https://doi.org/10.47750/pnr.2022.13.S07.033

    Article  CAS  Google Scholar 

  52. Taha, D., Mahdi, M., and Raauf, A.R., J. Adv. Pharm. Technol. Res., 2023, vol. 14, p. 213. https://doi.org/10.4103/japtr.japtr_170_23

    Article  PubMed  PubMed Central  Google Scholar 

  53. Adeniyi, A.A. and Ajibade, P.A., Molecules, 2013, vol. 18, pp. 3760–3778. https://doi.org/10.3390/molecules18043760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to Department of Chemistry, College of Sciences, University of Baghdad for them provide chemicals and support.

Funding

This work was supported by regular institutional funding, and no additional grants were obtained.

Author information

Authors and Affiliations

Authors

Contributions

The author OHR proposed the experiments. The author AAM synthesized compounds and studied their computational methods and antioxidant activity. Both authors participated in data processing, contributed to manuscript preparation, and participated in the discussions.

Corresponding author

Correspondence to Asmaa Abdulbaqi Maryoosh.

Ethics declarations

This article does not contain any studies involving animals or human participants performed by any of the authors.

Informed consent was not required for this article. No conflict of interest was declared by the authors.

Additional information

Publisher's Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maryoosh, A.A., Al-Jeilawi, O.H.R. Synthesis, Identification, Antioxidant, Molecular Docking, and In Silico ADME Study for Some New Derivatives Containing Thiourea Moiety. Russ J Bioorg Chem 50, 170–180 (2024). https://doi.org/10.1134/S1068162024010084

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162024010084

Keywords:

Navigation