Skip to main content
Log in

Synthesis and Properties of Xerogels Derived from Sulfated Pine Ethanol Lignin

  • Published:
Russian Journal of Bioorganic Chemistry Aims and scope Submit manuscript

Abstract

Organic xerogels based on lignin and tannins isolated from pine bark and wood were for the first time obtained by condensation with formaldehyde and furfuryl alcohol in the presence of hydrochloric acid. Sulfated pine ethanol lignin made it possible to obtain the first sulfur-containing (up to 1.3 wt %) lignin–(tannin)–formaldehyde and lignin–(tannin)–furfuryl xerogels. The gel density increased with the addition of tannins to lignin and ranged 0.13– 0.39 g/cm3. Xerogels synthesized by condensation with furfuryl alcohol were stronger than those obtained using formaldehyde. The presence of sulfur in xerogels was confirmed by elemental and chemical analyses and IR spectroscopy. Scanning electron microscopy showed that lignin–formaldehyde xerogels were formed from large polymer chains, which consisted of interconnected aggregates of micron-sized particles, and had large pores. A more compact, spatially crosslinked gel structure formed when tannins were added to the polycondensation system. The BET method showed that all xerogels had low porosity and that lignin–furfuryl samples had a larger average pore diameter (7.2–14.5 nm) as compared with lignin–formaldehyde samples (3.03–6.80 nm).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Rey-Raap, N., Szczurek, A., Fierro, V., Menéndez, J.A., Arenillas, A., and Celzard, A., Towards a feasible and scalable production of bio-xerogels, J. Colloid Interface Sci., 2015, vol. 456, pp. 138–144. https://doi.org/10.1016/j.jcis.2015.06.024

    Article  CAS  Google Scholar 

  2. Pierre, A.C. and Pajonk, G.M., Chemistry of aerogels and their applications, Chem. Rev., 2002, vol. 102, pp. 4243–4265. https://doi.org/10.1021/cr0101306

    Article  CAS  Google Scholar 

  3. Kraiwattanawong, K., Tamon, H., and Praserthdam, P., Influence of solvent species used in solvent exchange for preparation of mesoporous carbon xerogels from resorcinol and formaldehyde via subcritical drying, Micropor. Mesopor. Mater., 2011, vol. 138, nos. 1–3, pp. 8–16. https://doi.org/10.1016/j.micromeso.2010.10.001

    Article  CAS  Google Scholar 

  4. Job, N., Théry, A., Pirard, R., Marien, J., Kocon, L., Rouzaud, J.-N., and Béguin, F., Carbon aerogels, cryogels and xerogels: Influence of the drying method on the textural properties of porous carbon materials, Carbon, 2005, vol. 43, no. 12, pp. 2481–2494. https://doi.org/10.1016/j.carbon.2005.04.031

    Article  CAS  Google Scholar 

  5. Chen, Ch., Kennel, E.B., Stiller, A.H., Stansberry, P.G., and Zondlo, J.W., Carbon foam derived from various precursors, Carbon, 2006, vol. 44, pp. 1535–1543. https://doi.org/10.1016/j.carbon.2005.12.021

    Article  CAS  Google Scholar 

  6. Amaral-Labat, G., Szczurek, A., Fierro, V., Pizzi, A., and Celzard, A., Systematic studies of tannin-formaldehyde aerogels: Preparation and properties, Sci. Technol. Adv. Mater., 2013, vol. 14, no. 1, p. 015001. https://doi.org/10.1088/1468-6996/14/1/015001

    Article  CAS  Google Scholar 

  7. Stewart, D., Lignin as a base material for materials applications: Chemistry, application and economics, Indust. Crops Products, 2008, vol. 27, pp. 202–207. https://doi.org/10.1016/j.indcrop.2007.07.008

    Article  CAS  Google Scholar 

  8. Karaaslan, M.A., Kadla, J.F., and Ko, F.K., Lignin-based aerogels, in Lignin in Polymer Composites, Faruk, O. and Sain, M., Eds., Amsterdam: Elsevier, 2016, pp. 67–93. https://doi.org/10.1016/B978-0-323-35565-0.00005-9

    Book  Google Scholar 

  9. Chen, F. and Li, J., Synthesis and structural characteristics of organic aerogels with different content of lignin, Adv. Mater. Res., 2010, vols. 113–116, pp. 1837–1840. doi 10.4028/www.scientific.net/AMR.113-116.1837

  10. Tamon, H., Ishizaka, H., Mikami, M., and Okazaki, M., Porous structure of organic and carbon aerogels synthesized by sol-gel polycondensation of resorcinol with formaldehyde, Carbon, 1997, vol. 35, no. 6, pp. 791–796. https://doi.org/10.1016/S0008-6223(97)00024-9

    Article  CAS  Google Scholar 

  11. Chen, F., Xu, M., Wang, L., and Li, J., Preparation and characterization of organic aerogels from a lignin-resorcinol-formaldehyde copolymer, Bioresources, 2011, vol. 6, pp. 1261–1272.

    Google Scholar 

  12. Grishechko, L.I., Amaral-Labat, G., Szczurek, A., Fierro, V., Kuznetsov, B.N., and Celzard, A., Lignin–phenol–formaldehyde aerogels and cryogels, Micropor. Mesopor. Mater., 2013, vol. 168, pp. 19–29. https://doi.org/10.1016/j.micromeso.2012.09.024

    Article  CAS  Google Scholar 

  13. Grishechko, L.I., Amaral-Labat, G., Szczurek, A., Fierro, V., Kuznetsov, B.N., Pizzi, A., and Celzard, A., New tannin–lignin aerogels, Indust. Crops Products, 2013, vol. 41, pp. 347–355. https://doi.org/10.1016/j.indcrop.2012.04.052

    Article  CAS  Google Scholar 

  14. Mikova, N.M., Levdanskiy, V.A., Skwortsova, G.P., Zhizhaev, A.M., Lutoshkin, M.A., Chesnokov, N.V., and Kuznetsov, B.N., Structure and properties of organic xerogels derived from tannins and ethanol lignins of the siberian fir, Biomass Convers. Biorefinery, 2020. https://doi.org/10.1007/s13399-019-00561-8

    Book  Google Scholar 

  15. Nishida, M. and Uraki, Y., Lignin gel with unique swelling property, Bioresour. Technol., 2003, vol. 88, pp. 81–83. https://doi.org/10.1016/S0960-8524(02)00264-X

    Article  CAS  Google Scholar 

  16. Passauer, L., Highly swellable lignin hydrogels: Novel materials with interesting properties, ACS Symp. Ser., 2012, vol. 1107, pp. 211–228. https://doi.org/10.1021/bk-2012-1107.ch011

    Article  CAS  Google Scholar 

  17. Perez-Cantu, L., Liebner, F., and Smirnova, I., Preparation of aerogels from wheat straw lignin by cross-linking with oligo(alkylene glycol)-α,ω-diglycidyl ethers, Micropor. Mesopor. Mater., 2014, vol. 195, pp. 303–310. https://doi.org/10.1016/j.micromeso.2014.04.018

    Article  CAS  Google Scholar 

  18. Thakur, V.K. and Thakur, M.K., Recent advances in green hydrogels from lignin: A review, Int. J. Biol. Macromol., 2015, vol. 72, pp. 834–847. https://doi.org/10.1016/j.ijbiomac.2014.09.044

    Article  CAS  Google Scholar 

  19. Seo, J., Park, H., Shin, K., Baeck, S.H., Rhym, Y., and Shim, S.E., Lignin-derived macroporous carbon foams prepared by using poly(methyl methacrylate) particles as the template, Carbon, 2014, vol. 76, pp. 357–367. https://doi.org/10.1016/j.carbon.2014.04.087

    Article  CAS  Google Scholar 

  20. Malutan, T., Nici, R., and Popa, V.I., Contribution to the study of hydroxymethylation reaction of alkali lignin, BioResources, 2008, vol. 3, no. 1, pp. 13–20. https://doi.org/10.15376/biores.3.1.13-20

    Article  CAS  Google Scholar 

  21. Kuznetsov, B.N., Vasilyeva, N.Yu., Kazachenko, A.S., Levdansky, V.A., Kondrasenko, A.A., Malyar, Yu.N., Skvortsova, G.P., and Lutoshkin, M.A., Optimization of the process of abies ethanol lignin sulfation by sulfamic acid—ureamixture in 1,4-dioxane medium, Wood Sci. Technol., 2020, vol. 54, pp. 365–381. https://doi.org/10.1007/s00226-020-01157-6

    Article  CAS  Google Scholar 

  22. Lee, Y.J., Jung, J.C., Park, S., Seo, J.G., Baeck, S.H., Yoon, J.R., Yi, J., et al., Preparation and characterization of metal-doped carbon aerogel for supercapacitor, Curr. Appl. Phys., 2010, vol. 10, no. 3, pp. 947–951. https://doi.org/10.1016/j.cap.2009.11.078

    Article  Google Scholar 

  23. Machado, B.F., Gomes, H.T., Serp, P., Kalck, P., Figueiredo, J.L., and Faria, J.L., Carbon xerogel supported noble metal catalysts for fine chemical applications, Catal. Today, 2010, vol. 149, pp. 358–364. https://doi.org/10.1016/j.cattod.2009.06.016

    Article  CAS  Google Scholar 

  24. Feinle, A. and Husing, N., Mixed metal oxide aerogels from tailor-made precursors, J. Supercrit. Fluids, 2015, vol. 106, pp. 2–6. https://doi.org/10.1016/j.supflu.2015.07.015

    Article  CAS  Google Scholar 

  25. Rey-Raap, N., Szczurek, A., Fierro, V., Celzard, A., Menendez, J.A., and Arenillas, A., Advances in tailoring the porosity of tannin-based carbon xerogels, Indust. Crops Products, 2016, vol. 82, pp. 100–106. https://doi.org/10.1016/j.indcrop.2015.12.001

    Article  CAS  Google Scholar 

  26. Kiciński, W., Szala, M., and Bystrzejewsk, M., Sulfur-doped porous carbons: Synthesis and applications, Carbon, 2014, vol. 68, pp. 1–32. https://doi.org/10.1016/j.carbon.2013.11.004

    Article  CAS  Google Scholar 

  27. Kuznetsov, B.N., Vasilyeva, N.Yu., Kazachenko, A.S., Skvortsova, G.P., Levdansky, V.A., and Lutoshkin, M.A., Development of the method of abies wood ethanol lignin sulfonation using sulfamic acid, J. Sib. Fed. Univ. Chem., 2018, vol. 2, no. 1, pp. 122–130. https://doi.org/10.17516/1998-2836-0170

    Article  Google Scholar 

  28. Cheronis, N.D. and Ma, T.S., Organic Functional Group Analysis by Micro and Semimicro Methods, New York: Wiley, 1964.

    Google Scholar 

  29. Gregg, S. and Sing, K., Adsorption, Surface Area and Porosity, London: Academic, 1982.

    Google Scholar 

  30. Lignin and Lignans: Advances in Chemistry, Heitner, C., Dimmel, D., and Schmidt, J., Eds., Boca Raton, FL: CRC, Taylor and Francis Group, 2010. https://doi.org/10.1201/EBK1574444865

    Book  Google Scholar 

  31. Lochab, B., Shukla, S., and Varma, I.K., Naturally occurring phenolic sources: Monomers and polymers, RSC Adv., 2014, vol. 4, pp. 21712–21752. https://doi.org/10.1039/C4RA00181H

    Article  CAS  Google Scholar 

  32. Rey-Raap, N., Calvo, E.G., Menendez, J.A., and Arenillas, A., Exploring the potential of resorcinol-formaldehyde xerogels as thermal insulators, Micropor. Mesopor. Mater., 2017, vol. 244, pp. 50–54. https://doi.org/10.1016/j/micromeso.2017.02.044

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by a state assignment with Institute of Chemistry and Chemical Technology (project no. AAAA-A17-117021310219-4) and was performed using equipment of the Krasnoyarsk Regional Collective Access Center (Krasnoyarsk Research Center).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. N. Kuznetsov.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human subjects performed by any of the authors.

Additional information

Translated by T. Tkacheva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mikova, N.M., Levdanskiy, V.A., Mazurova, Y.V. et al. Synthesis and Properties of Xerogels Derived from Sulfated Pine Ethanol Lignin. Russ J Bioorg Chem 48, 1506–1513 (2022). https://doi.org/10.1134/S1068162022070196

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162022070196

Keywords:

Navigation