Skip to main content
Log in

Current Data about Milk Caseins

  • REVIEW ARTICLE
  • Published:
Russian Journal of Bioorganic Chemistry Aims and scope Submit manuscript

Abstract—

Cow’s milk is one of the most common triggers of food allergies in children. It is believed that the main role in the development of clinical symptoms of allergic reactions in adults is played by casein proteins, which are part of milk. To date, the main physicochemical and immunobiological properties of caseins have been studied and their primary structure has been determined. However, the question of the structural organization of the casein micelles of cow’s milk still causes much scientific controversy. Deciphering the conformational structure of caseins, the search for new IgE-binding epitopes allows us to identify ways for reducing the allergenic activity of cow’s milk caseins. The objective of this review is to summarize the available data on the structure and properties of milk casein proteins and to determine their role in the formation of sensitization to dairy products. This review describes the molecular characteristics, physicochemical properties and immunobiological functions of cow’s milk caseins, as well as the basic theoretical knowledge about the structure of the casein micelle. The primary structure of different types of caseins (αs1-, αs2-, β-, and κ-caseins) is analyzed in detail. A comparative analysis of the content of amino acid residues in the polypeptide chains of caseins of the above types was carried out. Glycosylation sites, hydrophobic and hydrophilic regions of the molecules were identified. The main caseins of female breast milk (β-casein, κ-casein) and cow’s milk were carried out. The paper deals with topical issues of allergenic activity of cow’s milk caseins and their cross-reactivity with milk proteins of other mammalian species. Further study of the physicochemical and immunobiological properties of caseins will contribute to the development of various strategies to reduce allergic reactions caused by milk consumption. Some approaches will be aimed at changing the structure of the allergen by the method of technological processing of milk, while others will be aimed at reducing the sensitivity to milk allergens using immunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Nguyen, T., Mathisen, R., and Tran, H., Br. Med. J., 2020, vol. 371, pp. 1–4. https://doi.org/10.1136/bmj.m4243

    Article  Google Scholar 

  2. Lukoyanova, O.L., Vopr. Sovrem. Pediatr., 2012, vol. 11, pp. 111–115.

    Article  Google Scholar 

  3. Petrova, S.Yu., Khlgatyan, S.V., Berzhets, V.M., Pishchulina, L.A., and Vasil’eva, A.V., Ross. Allergol. Zh., 2019, vol. 16, pp. 38–44.

    Google Scholar 

  4. Al’banova, V.I. and Pampura, A.N., Atopicheskii dermatit (Atopic Dermatitis), Moscow: GEOTAR-Media, 2020, pp. 94–95. https://doi.org/10.33029/9704-5640-8-AT-2020-1-144

  5. Villa, C., Costa, J., Oliveira, M., and Mafra, I., Compr. Rev. Food Sci. Food Saf., 2018, vol. 17, pp. 137–164. https://doi.org/10.1111/1541-4337.12318

    Article  PubMed  Google Scholar 

  6. Hernell, O., Nestlé Nutr. Inst. Workshop Ser., Pediatr. Program, 2011, vol. 67, pp. 17–28. https://doi.org/10.1159/000325572

    Article  CAS  Google Scholar 

  7. Golovach, T.N. and Kurchenko, V.P., Tr. BGU, 2010, vol. 5, pp. 1–55.

    Google Scholar 

  8. Allergen 2021. (WHO/IUIS) Allergen Nomenclature Sub-Committee. http://www.allergen.org/.

  9. Allergome 2021. Allergome—a database of allergenic molecules. http://www.allergome.org/.

  10. Pilolli, R., Nitride, Ch., Gillard, N., Huet, A., Van Poucke, Ch., Loose, M., Tranquet, O., Larre, C., Adel-Patient, K., Bernard, H., Mills, E.N., and Monaci, L., Food Res. Int., 2019, vol. 128, art. ID 108747. https://doi.org/10.1016/j.foodres.2019.108747

    Article  CAS  PubMed  Google Scholar 

  11. Wal, J., Allergy, 2001, vol. 56, pp. 35–38. https://doi.org/10.1034/j.1398-9995.2001.00911.x

    Article  PubMed  Google Scholar 

  12. Treweek, T., in Milk Protein, Hurley, W., Ed., Intech-Open, 2012, pp. 85–118. https://doi.org/10.5772/48348

  13. Bogatova, O.V. and Dogareva, N.G., Khimiya i fizika moloka. Uchebnoe posobie (Chemistry and Physics of Milk: Tutorial), Orenburg: Orenburg. Gos. Univ., 2004, pp. 1–137.

  14. Savel’kina, N.A., Biokhimiya i mikrobiologiya moloka i molochnykh produktov. Uchebnoe posobie (Biochemistry and Microbiology of Milk and Dairy Products: Tutorial), Bryansk: Michurinsk. Fil., Bryansk. Gos. Agr. Univ., 2015.

  15. Maity, S., Bhat, A.H., Giri, K., and Ambatipudi, K., J. Proteomics, 2020, vol. 215, art. ID 103648. https://doi.org/10.1016/j.jprot.2020.103648

    Article  CAS  PubMed  Google Scholar 

  16. Huppertz, T., Fox, P.F., and Kelly, A.L., in Proteins in Food Processing, Yada, R.Yu., Ed., Cambridge: Woodhead Publishing, 2018, 2nd ed., pp. 49–92. https://doi.org/10.1016/B978-0-08-100722-8.00004-8

  17. Horne, D.S., Curr. Opin. Coll. Interf. Sci., 2006, vol. 11, pp. 148–153. https://doi.org/10.1016/j.cocis.2005.11.004

    Article  CAS  Google Scholar 

  18. Kalyankar, D., Khedkar, C.D., Patil, A.M., and Deosarkar, S.S., in Encyclopedia of Food and Health, Caballero, B., Finglas, P., and Toldra, F., Eds., Oxford: Academic, 2016, pp. 741–747. https://doi.org/10.1016/B978-0-12-384947-2.00463-3

  19. Konrad, T. and Boratynski, J., Top. Curr. Chem., 2017, vol. 375, p. 71. https://doi.org/10.1007/s41061-017-0158-z

    Article  CAS  Google Scholar 

  20. Thompson, A., in Milk Proteins. From Expression to Food, Boland, M. and Singh, H., Eds., London: Academic, 2014, pp. 1–552.

    Google Scholar 

  21. Kovalyuk, N.V., Yakusheva, L.I., Shakhnazarova, Yu.Yu., and Kesem, A.A., Sb. Nauchn. Tr. SKNIIZh, 2019, vol. 8, pp. 4–8. https://doi.org/10.34617/4a9q-wn62

    Article  Google Scholar 

  22. Regan, J.O., Ennis, M.P., and Mulvihill, D.M., in Handbook of Hydrocolloids, Phillips, G. and Williams, P., Eds., Cambridge: Woodhead Publishing, 2009, 2nd ed., pp. 298–343. https://doi.org/10.1533/9781845695873.298

  23. Portnaya, I., Ben-Shoshan, E., Cogan, U., Khalfin, R., Fass, D., Ramon, O., and Danino, D., J. Agric. Food Chem., 2008, vol. 56, pp. 2192–2198. https://doi.org/10.1021/jf072630r

    Article  CAS  PubMed  Google Scholar 

  24. Cho, Y. and Jones, O.G., Adv. Food Nutr. Res., 2019, vol. 88, pp. 47–84. https://doi.org/10.1016/bs.afnr.2019.01.002

    Article  CAS  PubMed  Google Scholar 

  25. Sood, S.M., Erickson, G., and Slattery, C.W., J. Dairy Sci., 2003, vol. 86, pp. 2269–2275. https://doi.org/10.3168/jds.S0022-0302(03)73818-1

    Article  CAS  PubMed  Google Scholar 

  26. Shlyapnikova, S.V. and Batyrova, E.R., Biomika, 2017, vol. 9, pp. 33–41.

    Google Scholar 

  27. Dumpler, J., On the Heat Stability of Concentrated Milk Systems, Heidelberg: Springer Spektrum, 2017, pp. 143–179. https://doi.org/10.1007/978-3-658-19696-7

  28. Farrell, H.M., Malin, E.L., Brown, E.M., and Qi, P.X., Curr. Opin. Colloid Interface Sci., 2006, vol. 11, pp. 135–147. https://doi.org/10.1016/j.cocis.2005.11.005

    Article  CAS  Google Scholar 

  29. Livney, Y.D., Curr. Opin. Colloid Interface Sci., 2010, vol. 15, pp. 73–83. https://doi.org/10.1016/j.cocis.2009.11.002

    Article  CAS  Google Scholar 

  30. Mirdha, L. and Chakraborty, H., Int. J. Biol. Macromolecules, 2019, vol. 131, pp. 89–96.

    Article  CAS  Google Scholar 

  31. Rocha-Mendoza, D. and Jimenez-Flores, R., in Encyclopedia of Dairy Sciences, Academic, 2022, 3rd ed., pp. 870–880. https://doi.org/10.1016/B978-0-12-818766-1.00277-4

  32. Rogozhin, V.V., Biokhimiya sel’skokhozyaistvennoi produktsii (Biochemistry of Agricultural Products), St. Petersburg: GIORD, 2014, pp. 393–446.

  33. Eskin, N.A. and Shahidi, F., Biochemistry of Foods, London: Academic, 2013, 3rd ed., pp. 319–323.

    Google Scholar 

  34. de Kruif, C.G., Huppertz, T., Urban, V.S., and Petukhov, A.V., Adv. Colloid Interface Sci., 2012, vols. 171–172, pp. 36–52. https://doi.org/10.1016/j.cis.2012.01.002

    Article  CAS  PubMed  Google Scholar 

  35. Sood, S.M., Erickson, G., and Slattery, C.W., J. Dairy Sci., 2002, vol. 85, pp. 472–477. https://doi.org/10.3168/jds.S0022-0302(02)74097-6

    Article  CAS  PubMed  Google Scholar 

  36. Demmelmair, H., Prell, C., and Timby, N., Nutrients, 2017, vol. 9, p. 817. https://doi.org/10.3390/nu9080817

    Article  CAS  PubMed Central  Google Scholar 

  37. Wakerley, J.B., in Knobil and Neill’s Physiology of Reproduction, Neill, J.D., Ed., London: Academic, 2006, 3rd ed., pp. 3129–3191.

    Google Scholar 

  38. Zhu, J. and Dingess, K.A., Nutrients, 2019, vol. 11, p. 1834. https://doi.org/10.3390/nu11081834

    Article  CAS  PubMed Central  Google Scholar 

  39. Kim, Y.J., Park, S., Oh, Y.K., Kang, W., Kim, H.S., and Lee, E.Y., Protein Expression Purif., 2005, vol. 41, pp. 441–446. https://doi.org/10.1016/j.pep.2005.02.021

    Article  CAS  Google Scholar 

  40. Jauregui-Rincón, J., Salinas, E., Vela, N., and Jiménez, M., Whey—Biological Properties and Alternative Uses, Gigli, I., Ed., 2018. https://doi.org/10.5772/intechopen.82144

  41. Costa, A., Purcell, GoesC., and Gama, P., Physiol. Rep., 2021, vol. 9, art. ID e14744. https://doi.org/10.14814/phy2.14744

    Article  CAS  Google Scholar 

  42. Dewettinck, K. and Herman, L., Food Control., 2014, vol. 42, pp. 188–201. https://doi.org/10.1016/j.foodcont.2014.01.045

    Article  Google Scholar 

  43. Sood, S.M. and Slattery, C.W., J. Dairy Sci., 2001, vol. 84, pp. 2163–2169. https://doi.org/10.3168/jds.S0022-0302(01)74662-0

    Article  CAS  PubMed  Google Scholar 

  44. Wang, X., Zhao, X., Huang, D., Pan, X., Qi, Y., Yang, Y., Zhao, H., and Cheng, G., Sci. Rep., vol. 27, art. ID 43020. https://doi.org/10.1038/srep43020

  45. Costa, J., Villa, C., Verhoeckx, K., Cirkovic, T., Schrama, D., Roncada, P., Rodrigues, P., Piras, C., Martín-Pedraza, L., Monaci, L., Molina, E., Mazzucchelli, G., Mafra, I., Lupi, R., Lozano-Ojalvo, D., Larre, C., Kluber, J., Gelencser, E., Bueno-Díaz, C., and Holzhauser, T., Clin. Rev. Allerg. Immunol., 2021. https://doi.org/10.1007/s12016-020-08826-1

  46. Han, N., Jarvinen, K., Cocco, R., Busse, P., Sampson, H., and Beyer, K., Allergy, 2008, vol. 63, pp. 198–204. https://doi.org/10.1111/j.1398-9995.2007.01539.x

    Article  CAS  PubMed  Google Scholar 

  47. Ebrahimi, M., Gharagozlou, M., Mohebbi, A., Hafezi, N., Azizi, G., and Movahedi, M., Iran J. Allergy Asthma Immunol., 2017, vol. 16, pp. 183–192.

    PubMed  Google Scholar 

  48. Ebisawa, M., Ito, K., and Fujisawa, T., Allergol. Int., 2017, vol. 66, pp. 248–264. https://doi.org/10.1016/j.alit.2017.02.0

    Article  PubMed  Google Scholar 

Download references

Funding

State source of funding for the planned research topic “Development of native and molecular forms of allergens intended for the diagnosis and treatment of allergic diseases in pediatric practice.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Yu. Petrova.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

This article does not contain any research involving humans and animals as research objects.

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Corresponding author:phone: +7 (916) 463-32-97.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petrova, S.Y., Khlgatian, S.V., Emel’yanova, O.Y. et al. Current Data about Milk Caseins. Russ J Bioorg Chem 48, 273–280 (2022). https://doi.org/10.1134/S1068162022020170

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162022020170

Keywords:

Navigation